Cho f(x), g(x) là các hàm số liên tục trên R thỏa mãn ∫ 0 1 f x d x = 3 , ∫ 0 2 f x − 3 g x d x = 4 v à ∫ 0 2 2 f x + g x d x = 8 . Tính ∫ 1 2 f x d x
A. I = 1
B. I = 2
C. I = 3
D. I = 0
Cho f(x) là hàm số chẵn, liên tục trên R thỏa mãn ∫ 0 1 f ( x ) d x = 2018 và g(x) là hàm số liên tục trên R thỏa mãn g ( x ) + g ( - x ) = 1 Tính tích phân I = ∫ - 1 1 f ( x ) . g ( x ) d x
A. I = 2018
B. I = 504,5
C. I =4036
D. I = 1008
Cho f(x) là hàm số liên tục trên R thỏa mãn f(x) + f'(x) = x và f(0) = 1. Tính f(1).
A. 2/e
B. 1 / e
C. e
D. e / 2
Chọn A
.
Nhân 2 vế của với ta được .
Hay .
Xét .
Đặt .
Suy ra .
Theo giả thiết nên
.
Cho hàm số f(x) xác định và liên tục trên R và có đạo hàm f'(x) thỏa mãn f ' ( x ) = ( 1 - x ) ( x + 2 ) g ( x ) + 2018 với g ( x ) < 0 , ∀ x ∈ R . Hàm số y = f ( 1 - x ) + 2018 x + 2019 nghịch biến trên khoảng nào dưới đây?
A . ( 1 ; + ∞ ) .
B . ( 0 ; 3 ) .
C . ( - ∞ ; 3 ) .
D . ( 4 ; + ∞ ) .
Cho f(x) là hàm số liên tục trên R thỏa mãn f(x) + f'(x) = sinx với mọi x và f(0) = 1. Tính e x f ( π ) .
A. e x - 1 2
B. e x + 1 2
C. e x + 3 2
D. π + 1 2
Cho hàm số y=f(x) liên tục trên R có đạo hàm cấp 3 với f’’’(x)=0 và thỏa mãn f ( x ) ' 2018 1 - f ' ' ( x ) = 2 x ( x + 1 ) 2 ( x - 2018 ) 2019 : f ' ' ( x ) , ∀ x ∈ R Hàm số g ( x ) = f ' ( x ) 2019 1 - f ' ' ( x ) có bao nhiêu điểm cực trị?
A. 1
B.2
C.3
D. 4
Cho hàm số y = f (x) thỏa mãn f(0) = 1, f'(x) liên tục trên R và ∫ 0 3 f ' ( x ) dx = 9 .Giá trị của f(3) là
A. 6
B. 3
C. 10
D. 9
Cho hàm số y = f (x) thỏa mãn f(0) = 1, f'(x) liên tục trên R và ∫ 0 3 f ' ( x ) d x = 9 . Giá trị của f(3) là
Cho hàm số f(x) liên tục trên tập R thỏa mãn f ' x x 2 + 1 = 2 x f x + 1 và f(x) > -1, f(0)=0. Tính f 3 .
A. .
B. 9.
C. 3.
D. 0.
Cho hàm số f(x) có đạo hàm liên tục trên R và thỏa mãn f(x)>0,∀x∈R. Biết f(0)=1 và (2-x)f(x)-f' (x)=0. Tìm tất cả các giá trị thực của tham số m để phương trình f(x)=m có hai nghiệm phân biệt.
A. m< e 2 .
B. 0<m< e 2 .
C. 0<m≤ e 2 .
D. m > e 2
Cho hàm số y=f (x) liên tục trên R thỏa mãn l i m x → - ∞ f ( x ) = 0 ; l i m x → + ∞ f ( x ) = 1 . Tổng số đường tiệm cận đứng và ngang của đồ thị hàm số đã cho là:
A. 2
B. 1
C. 3
D. 0
Đáp án A
Phương pháp:
Nếu l i m x → + ∞ y = a hoặc l i m x → - ∞ y = a thì y = a là TCN của đồ thị hàm số y = f(x)
Nếu l i m x → b + y = ∞ hoặc l i m x → b - y = ∞ thì x = b là TCĐ của đồ thị hàm số y = f(x)
Cách giải: Do hàm số liên tục trên R nên đồ thị hàm số không có TCĐ.
l i m x → - ∞ f ( x ) = 0 ; l i m x → + ∞ f ( x ) = 1 → y = 0 và y = 1 là 2 đường TCN của đồ thị hàm số.