Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = - x 4 + 2 x 2 - 1 trên đoạn [-2;1]. Tính M + m
A.0
B.-9
C.-10
D.-1
Gọi m và M lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số y = x − 4 − x 2 . Tính tổng M + m.
A. M + m = 2 − 2
B. M + m = 2 1 + 2
C. M + m = 2 1 − 2
D. M + m = 4
Chọn C.
Phương pháp:
+) Tìm tập xác định D = [a;b] của hàm số đã cho.
Gọi m và M lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số y = x - 4 - x 2 Tính tổng M+m
A. 2 - 2
B. 2 1 + 2
C. 2 1 - 2
D. 4
Gọi m và M lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số y = x - 4 - x 2 . Tính tổng M + m.
A. M + m = 2 - 2
B. M + m = 2(1 + 2 )
C. M + m = 2(1 - 2 )
D. M + m = 4
Chọn C
Tập xác định:
Do đó
Chọn đáp án C
Gọi m và M lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số y = x - 4 - x 2 . Khi đó M-m bằng:
A. 4
B. 2 2 - 1
C. 2 - 2
D. 2 2 + 1
Gọi m và M lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số y = x - 4 - x 2 . Khi đó M-m bằng:
A. 4
B. 2 2 - 1
C. 2 - 2
D. 2 2 + 1
Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 1 x 2 + x + 1 . Giá trị của M - 3m bằng bao nhiêu?
A. 0
B. 1
C. -1
D. 2
Gọi m, M lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số y = x + 9 x trên đoạn [1;4]. Giá trị của m + M bằng
A. 65 4
B. 16
C. 49 4
D. 10
Chọn B
Hàm số xác định và liên tục trên đoạn [1;4]. Đặt y = f(x)
Ta có:
Có
Vậy m + M = 16.
Gọi m, M lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số y = x + 9 x trên đoạn 1 , 4 . Giá trị của m + M bằng
A. 65 4
B. 16
C. 49 4
D. 10
Gọi m, M lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số y = x + 9 x trên đoạn [1;4]. Giá trị của m + M bằng
A. 65 4
B. 16
C. 49 4
D. 10
Gọi M và m lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số y = 1 − x − 2 x 2 x + 1 . Khi đó giá trị của M − m là
A. –2.
B. 2.
C. –1.
D. 1.
Đáp án B.
ĐK: 0 ≤ x ≤ 1 . Với điều kiện này ta thấy rằng tử là nghịch biên (x tăng thì giá trị tử giảm đi) còn mẫu là đồng biến và mẫu dương (x tăng thì mẫu tăng theo) vì vậy tổng thể hàm y là hàm nghịch biến. Do đó M = max x ∈ 0 ; 1 y = y 0 = 1 ; m = min x ∈ 0 ; 1 y = y 1 = − 1 vậy M − m = 2.