Cho hàm số y = f(x) thỏa mãn f(2) = 1 4 và f ' ( x ) = 2 x f ( x ) 2 với ∀ x ∈ R , tính f(1)
A. - 1 2
B. 1 7
C. - 1 7
D. 7
Cho hàm số y = f(x) có đạo hàm liên tục trên đoạn [0;1], thỏa mãn ( f ' ( x ) ) 2 + 4 f ( x ) = 8 x 2 + 4 , ∀ x ∈ [ 0 ; 1 ] và f(1) = 2. Tính ∫ 0 1 f ( x ) d x
A . 1 3
B. 2.
C . 4 3
D . 21 4
Cho hàm số y = f ( x ) thỏa mãn f ( 2 ) = 1 4 và f ' ( x ) = 2 x . [ f ( x ) ] 2 với ∀ x ∈ R tính f ( 1 )
Cho hàm số y=f(x) có đạo hàm dương trên [1;2] thỏa mãn f ( 1 ) = 1 e và x f ' ( x ) + ( x + 1 ) f ( x ) = 3 x 2 e - x . Tính f(2)
A. f ( 2 ) = 1 e 2
B. f ( 2 ) = 2 e 2
C. f ( 2 ) = 4 e 2
D. f ( 2 ) = 8 e 2
Cho hàm số y=f(x) có đạo hàm liên tục trên ( 0 ; + ∞ ) thỏa mãn f ' ( x ) + f ( x ) x = 4 x 2 + 3 x và f(1)=2. Phương trình tiếp tuyến của đồ thị hàm số y=f(x) tại điểm có hoành độ x = 2 là x
A. y = 16x+20.
B. y = -16x+20
C. y = -16x-20
D. y = 16x-20.
Cho hàm số y=f(x) xác định, có đạo hàm trên R thỏa mãn f 2 ( - x ) = ( x 2 + 2 x + 4 ) f ( x + 2 ) và f ( x ) ≠ 0 , ∀ x ∈ R . Phương trình tiếp tuyến của đồ thị hàm số y=f(x) tại điểm có hoành độ x=2 là
A. y=-2x+4.
B. y=2x+4.
C. y=2x.
D. y=4x+4.
Cho hàm số y = f(x) có đạo hàm f'(x)>0, ∀ x ∈ 1 ; 2 thỏa mãn f(1) = 1, f(2) = 22/14 và ∫ 1 2 f ' x 3 x 4 d x = 7 375 . Tích phân ∫ 1 2 f x d x bằng
A. .
B. .
C. .
D. .
Cho hàm số y=f(x) thỏa mãn f ' ( x ) + 2 x f ( x ) = e - x 2 , ∀ x ∈ R và f(1)=0 Tính giá trị f(2).
Cho hàm số F ( x ) = a x 3 + b x 2 + c x + 1 là một nguyên hàm của hàm số f(x) thỏa mãn f(1) = 2, f(2) = 3, f(3) = 4. Hàm số F(x) là
Cho hàm số y=f(x) xác định và liên tục trên [0;2] thỏa mãn e x f 2 ( x ) + f ( x ) = f ' ( x ) - 1 e x và f(0)=1. Tính f(2).
A. 1 e 2
B. - 5 3 e 2
C. - 1 e 2
D. - 2 3 e 2