Cho đường thẳng:
(d):y = x + 3
(d'):y= ax + 1
a) tìm a biết (d') đi qua điểm M (-1;2)
b)Vẽ (d) và (d') với a vừa tìm được cùng một mặt phẳng tạo độ
c)Tìm tạo độ giao điểm N của đường thẳng (d) và (d')
d)Chứng minh rằng (d) vuông góc với (d')
cho đường thẳng
(d):y=x+3
(d'):y=ax+1
A,tìm a biết (d') đi qua điểm m(1;-2)
b,vẽ (d) và (d') với a với tìm dc mặt phẳng tọa độ
c tìm tọa độ giao điểm N của (d) và (d')
tính góc a tạo bởi (d) với trục ox
-tính góc a' tạo bởi (d') với trục ox
a: Thay x=1 và y=-2 vào y=ax+1, ta được:
a+1=-2
hay a=-3
Vậy: (d'): y=-3x+1
c: Tọa độ giao điểm của (d) và (d') là:
\(\left\{{}\begin{matrix}-3x+1=x+3\\y=x+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=3-\dfrac{1}{2}=\dfrac{5}{2}\end{matrix}\right.\)
Bài 3. Trên mặt phẳng Oxy, cho đường thẳng (d): y = ax+b với a, b là hằng số. Tìm a, b biết:
a) d đi qua điểm M(1;−2) và song song với đường thẳng d_{1}:y=2x-1
b) d đi qua gốc tọa độ và qua giao điểm của hai đường thẳng d_{2}:y=4x-3 và d_{3}:y=-x+3.
c) d cắt trục hoành tại điểm có hoành độ bằng 5 và đi qua điểm M(2;3).
d) d cắt đường thẳng dạ : y=x+1 tại điểm có tung độ bằng 2 và vuông góc với đường thẳng d_{2}:y=3-x.
2. Trong mặt phẳng tọa độ Oxy cho Parabol (P): y=X’ và đường thẳng (d):
y=3x+m² -1
a) Tìm m để đường thẳng (d) đi qua điểm A(-1: 5).
b) Tìm m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt có hoành độ x,,, thỏa
mãn |x|+2|x|=3.
Bài 1 :Giả sử đường thẳng (d) có phương trình y=ax+b . Xác định a,b để (d) đi qua hai điểm A(1;3) và B(-3;-1)
Bài 2 Cho hàm số y=x+m (d). Tìm các giá trị của m để đường thẳng (d)
1, Đi qua điểm A(1;2003)
2, Song song với đường thẳng x-y+3=0
giúp em với ạ
1. Cho đường thẳng d y=ax+2. tìm hệ số góc của của (d) biết đường thẳng đi qua điểm m (3,6)
2. Cho hàm số y=-x+3. a)vẽ đồ thị (d) của hàm số. b) tính góc a tạo bới đường thẳng y=-x+3 với trục ox
1: Thay x=3 và y=6 vào (d), ta được:
3a+2=6
hay \(a=\dfrac{4}{3}\)
Cho đường thẳng (d): y=ax+b
a) Tìm a,b sao cho (d) đi qua A(1;-1) và song song với đường thẳng y=2x+3
b) Vẽ đường thẳng (d)
c) Tìm m sao cho 3 đường thẳng (d) và y=x+1 và y=(m-1).x+5 đồng qui.
a: Vì (d)//y=2x+3 nên a=2
Vậy: (d): y=2x+b
Thay x=1 và y=-1 vào (d), ta được:
b+2=-1
hay b=-3
c. Gọi: \(\left[{}\begin{matrix}y=x+1\left(d'\right)\\y=\left(m-1\right)x+5\left(d''\right)\end{matrix}\right.\)
Ta có: \(PTHDGD:\left(d\right)-\left(d'\right)\)
\(2x+3=x+1\)
\(\Rightarrow x=-2\left(1\right)\)
\(Thay\left(1\right)in\left(d'\right):y=-2+1=-1\)
\(\Rightarrow A\left(-2;-1\right)\)
Để 3 đt này đồng quy, thì \(A\left(-2;-1\right)\in\left(d''\right)\Leftrightarrow-1=-2m+2+5\)
\(\Rightarrow m=4\)
Cho đường thẳng (d): y=ax+b
a) Tìm a,b sao cho (d) đi qua A(1;-1) và song song với đường thẳng y=2x+3
b) Vẽ đường thẳng (d)
c) Tìm m sao cho 3 đường thẳng (d) và y=x+1 và y=(m-1).x+5 đồng qui.
a: Vì (d)//y=2x+3 nên a=2
Thay x=1 và y=-1 vào y=2x+b, ta được:
b+2=-1
hay b=-3
\(a,\Leftrightarrow\left\{{}\begin{matrix}a+b=-1\\a=2;b\ne3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=-3\end{matrix}\right.\\ c,\text{PT hoành độ giao điểm }\left(d\right)\text{ và }y=x+1\\ x+1=2x-3\Leftrightarrow x=4\Leftrightarrow y=5\Leftrightarrow A\left(4;5\right)\\ \text{Để 3 đt đồng quy thì }A\left(4;5\right)\in y=\left(m-1\right)x+5\\ \Leftrightarrow4m-4+5=5\Leftrightarrow m=1\)
cho đường (d):y=ax+b. Tìm a,b để đường thẳng (d )song song với đường thẳng (d'):y=2x+1 và đi qua điểm M(3;-2)
Đường thẳng (d) song song với (d') :
\(a=2\)
Vì : (d) đi qua M(3,-2):
\(-2=2\cdot3+b\)
\(\Rightarrow b=-7\)
\(\left(d\right):y=2x-7\)
Cho hàm số y = 2x + 3 (d) và y = x − 1 (d’)
a, Tìm tọa độ giao điểm M của hai đường thẳng (d) và (d’).
b, Tìm hệ số a và b của hàm số y = ax + b có đồ thị đi qua điểm (−2; 3) và song song với đường thẳng (d).
a. \(PTHDGD:\left(d\right)-\left(d'\right):2x+3=x-1\)
\(\Rightarrow x=-4\left(1\right)\)
Thay (1) vào (d'): \(y=-4-1=-5\)
\(\Rightarrow M\left(-4;-5\right)\)
\(a,\text{PT hoành độ giao điểm: }2x+3=x-1\\ \Leftrightarrow x=-4\Leftrightarrow y=-5\\ \Leftrightarrow M\left(-4;-5\right)\\ b,\Leftrightarrow\left\{{}\begin{matrix}-2a+b=3\\a=2;b\ne3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=7\end{matrix}\right.\)