Chứng minh rằng đường thẳng y = mx-2(m+2) luôn đi qua 1 điểm cố định
chứng tỏ rằng đường thẳng y=mx-2(m+1) luôn đi qua 1 điểm cố định thuộc đường thẳng y=x-4
Cho 2 đường thẳng (d1): mx -y=2 và (d2): (2-m)x+y=m
Chứng minh rằng đường thẳng d1 luôn đi qua một điểm cố định B và d2 luôn đi qua một điểm cố định C
Em cảm ơn ạ.
Ta có: (d1): y=mx-y=2
\(\Leftrightarrow y=mx-2\)
\(\Leftrightarrow y+2=mx\)
Tọa độ điểm B cố định là nghiệm của hệ phương trình:
\(\left\{{}\begin{matrix}y+2=0\\x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-2\\x=0\end{matrix}\right.\)
Vậy: (d1) luôn đi qua B(0;-2)
Ta có: (d2): (2-m)x+y=m
\(\Leftrightarrow y=mx-2x+m\)
\(\Leftrightarrow y+2x=m\left(x+1\right)\)
Tọa độ điểm C cố định là nghiệm của hệ phương trình:
\(\left\{{}\begin{matrix}x+1=0\\y+2x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-2x=-2\cdot\left(-1\right)=2\end{matrix}\right.\)
Vậy: (d2) luôn đi qua điểm C(-1;2)
Gọi \(B\left(x_B;y_B\right)\) là điểm cố định mà \(\left(d_1\right)\) đi qua
\(\Rightarrow mx_B-y_B=2\Rightarrow mx_B-\left(y_B+2\right)=0\Rightarrow\left\{{}\begin{matrix}x_B=0\\y_B=-2\end{matrix}\right.\)
\(\Rightarrow B\left(0;-2\right)\Rightarrow\left(d_1\right)\) luôn đi qua điểm \(B\left(0;-2\right)\) cố định
Gọi \(C\left(x_C;y_C\right)\) là điểm cố định mà \(\left(d_2\right)\) đi qua
\(\Rightarrow\left(2-m\right)x_C+y_C=m\Rightarrow2x_C-mx_C-m+y_C=0\)
\(\Rightarrow-m\left(x_C+1\right)+2x_C+y_C=0\Rightarrow\left\{{}\begin{matrix}x_C=-1\\2x_C+y_X=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x_C=-1\\y_C=2\end{matrix}\right.\)
\(\Rightarrow C\left(-1;2\right)\Rightarrow\left(d_2\right)\) luôn đi qua điểm \(C\left(-1;2\right)\) cố định
Cho đường thẳng (d) : y = mx +1 và parabol : y = x2
a,Chứng minh rằng với mọi m thì (d) luôn đi qua 1 điểm cố định ?
b,Chứng minh rằng (P) luôn cắt (d) tại 2 điểm phân biệt với mọi m ?
Chứng minh rằng đồ thị hàm số \(y=mx^3+2mx^2+\left(1-m\right)x+3-2\) luôn đi qua ba điểm cố định.
Chứng minh ba điểm cố định đó thẳng hàng.
\(y=mx^3+2mx^2+\left(1-m\right)x+3-2m\)
\(\Leftrightarrow\left(x^3+2x^2-x-2\right)m+\left(x-y+3\right)=0\)
Gọi \(\left(x_0\text{;}y_0\right)\) là điểm cố định mà đồ thị hàm số đi qua.
\(\Leftrightarrow\left\{{}\begin{matrix}x_0^3+2x_0^2-x_0-2=0\left(a\right)\\x_0-y_0+3=0\end{matrix}\right.\)
PT (a) có 3 nghiệm phân biệt nên đồ thị hàm số luôn đi qua 3 điểm cố định.
Giải pt ra 3 điểm đó là \(A\left(1\text{;}4\right),B\left(-1\text{;}2\right),C\left(-2\text{;}1\right)\)
\(\overrightarrow{AB}=\left(-2\text{;}-2\right)\)
\(\overrightarrow{AC}=\left(-3\text{;}-3\right)\)
\(\overrightarrow{AB}=\dfrac{2}{3}\overrightarrow{AC}\) => Vector AB và vector AC cùng hướng.
Vậy 3 điểm A, B, C thẳng hàng.
(P): y=\(\dfrac{x^2}{2}\) (d): y=mx+m+5
a)Chứng minh đường thẳng (d) luôn đi qua một điểm cố định với mọi giá trị m và tìm tọa độ điểm cố định đó.
b)Đường thẳng (d) luôn cắt parabol (P) tại 2 điểm phân biệt
Cho hàm số y=mx+2m+1(d). Chứng minh rằng với mọi giá trị của m thì học đường thẳng d luôn đi qua 1 điểm cố định. Hãy xác định điểm cố định đó.
Chứng tỏ rằng họ đường thẳng (d ): y=mx+m+1 luôn đi qua 1 điểm cố định.
Gọi 2 điểm cố định là \(A\left(x_0;y_0\right)\)
Thay vào ptđt (d) ta được : \(y_0=mx_0+m+1\Leftrightarrow mx_0+m+1-y_0=0\)
\(\Leftrightarrow m\left(x_0+1\right)+\left(1-y_0\right)=0\)
Đẳng thức xảy ra khi \(\hept{\begin{cases}x_0+1=0\\1-y_0=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x_0=-1\\y_0=1\end{cases}}\Rightarrow A\left(-1;1\right)\)
Vậy d luôn đi qua 1 điểm cố định A(-1;1)
Hoành độ giao điểm của (P) và (d) là nghiệm của phương trình :
14.x2=x−114.x2=x−1
<=> x2 = 4x - 4
<=> x2 - 4x + 4 = 0 <=> (x - 2)2 = 0 <=> x - 2= 0 <=> x = 2
=> y = 2-1 = 1
Vậy (P) cắt (d) tại 1 điểm duy nhất là (2;1)
=> đpcm
đúng ko ?????????????
sai thì cho mik xin lỗi
chứng minh rằng
a) Họ đường thẳng k(x+3)-7-y=0 luôn đi qua điểm cố định với mọi k
b) Họ đường thẳng (m+2)x+(m-3)y-m+8=0 luôn đi qua điểm cố định với mọi m
c) Họ đường thẳng y=(2-k)x+k-5 luôn đi qua điểm cố định với mọi k
a/ Gọi điểm cố định \(M\left(x_0;y_0\right)\)
Khi đó đường thẳng y = k(x+3)-7 đi qua M , tức \(k\left(x_0+3\right)-7-y_0=0\)
Vì đường thẳng y = k(x+3)-7 luôn đi qua M nên \(\hept{\begin{cases}x_0+3=0\\-y_0-7=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x_0=-3\\y_0=-7\end{cases}}\)
Vậy đường thẳng đã cho luôn đi qua điểm M(-3;-7)
b/ Gọi điểm cố định là \(N\left(x_0;y_0\right)\)
Vì họ đường thẳng (m+2)x + (m-3)y -m+8 = 0 luôn đi qua N nên :
\(\left(m+2\right).x_0+\left(m-3\right).y_0-m+8=0\)
\(\Leftrightarrow m\left(x_0+y_0-1\right)+\left(2x_0-3y_0+8\right)=0\)
Ta có \(\hept{\begin{cases}x_0+y_0-1=0\\2x_0-3y_0+8=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x_0=-1\\y_0=2\end{cases}}\)
Vậy điểm cố định N(-1;2)
Câu còn lại bạn làm tương tự nhé ^^
c/ Đơn giản thôi mà =)
Ta cũng gọi điểm cố định đó là \(M\left(x_0;y_0\right)\)
Vì họ đường thẳng y=(2-k)x+k-5 đi qua M nên :
\(y_0=\left(2-k\right)x_0+k-5\Leftrightarrow k\left(1-x_0\right)+\left(2x_0-y_0-5\right)=0\)
Ta có \(\hept{\begin{cases}1-x_0=0\\2x_0-y_0-5=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x_0=1\\y_0=-3\end{cases}}\)
Vậy điểm cố định là M(1;-3)
Chứng tỏ rằng đường thẳng mx + 3 + (3m - 1)y = 0 luôn đi qua một điểm cố định với mọi m. Tìm tọa độ điểm cố định đó?
Giả sử ( x 0 ; y 0 ) là điểm cố định mà đường thẳng mx + 3 + (3m – 1)y = 0 luôn đi qua.
Ta có:
m x 0 + 3 + (3m - 1) y 0 = 0 với mọi m
⇔ m x 0 + 3 + 3m y 0 - y 0 = 0 với mọi m
⇔ m( x 0 + 3 y 0 ) + 3 - y 0 = 0 với mọi m
Vậy điểm cố định mà đường thẳng luôn đi qua là (-9: 3)