tìm a, b để (2a+17x^2+15x+6x^3) chia cho (2x^2+3x+1) dư 2
LÀM TÍNH CHIA:
a) \(\left(6x^6+2x^5-2x^4-15x^3+x^2+7x+2\right):\left(3x^2+x-1\right)\)
b) \(\left(-6x^4+5x^3+17x^2-23x+7\right):\left(-3x^2-2x+7\right)\)
C1: Xác định a, b để \(x^4-3x^2+ax+b\) chia hết cho \(x^2-3x+2\)
C2: sắp xếp các đa thức rồi đặt phép chia (chỉ cần sắp xếp giùm mk thôi còn mk tự chia)
a, \(\left(6x^6+2x^5-2+7x+x^2-15x^3-2x^4\right):\left(x+3x-1\right)\)
b, \(\left(17x^2-6x^4+5x^3-23x+7\right):\left(7-3x^2-2x\right)\)
làm nhanh giúp mk nhé mơn
C1: Gọi đa thức thương là Q(x)
Vì x^4 : x^2 = x^2
=> đa thức có dạng x^2+mx+n
Đề x^4 - 3x^2 + ax+b chia hết x^2 - 3x + 2
=> x^4 - 3x^2 + ax + b = (x^2 - 3x + 2)(x^2 + mx + n)
x^4+ 0x^3 - 3x^2 +ax+b = x^4 +mx^3 +(x^2)n -3x^3 -3mx^2 - 3xn + 2x^2 + 2mx + 2n
x^4 + 0x^3 -3x^2 + ax+b = x^4 + x^3(m-3) - x^2(3m - n -2) +x(2m - 3n) +2n
<=>| 0 = m-3 <=> | m = 3
| 3=3m-n-2 | b= 8
| a=2m-3n | n = 4
| b = 2n | a = -6
Vậy a= -6, b= 8
\(15x^3-3x^5-6x^2-8x^3-2x+11-3x^5-17x^3+6x^2\)
ta có : ( 15x3 -8x3-17x3) - (3x5+3x5)+(6x2 - 6x2)-2x+11 = -10x3 -2x + 11
Bài 5: Tìm a , b để các đa thức sau:
1) x^4+6x^3+7x^2-6x+a chia hết cho x2+3x-1
2) x^4-x^3+6x^2-x+a chia hết cho x^2- x+5
3) x^3+3x^2+5x+a chia hết cho x+3
4) x^3+2x^2-7x+a chia hết cho 3x -1
5) 2x^2+ax+1 chia cho x-3 dư 4
3: \(\Leftrightarrow a-15=0\)
hay a=15
Không thực hiện phép chia, xét xem các phép chia sau đây phép chia nào là phép chia hết, phép chia nào là phép chia còn dư và tìm số dư đó:
a) (6x^2 -3x +5) : (2x -1)
b) (9x^4 -6x^3 +15x^2 +2x +3) : (3x^2 -2x +5)
c) (18x^5 +9x^4 -3x^3 +6x^2 +3x -1) : (6x^2 +3x -1)
Xác định a để
a, (2x^2+6x+3a) chia hết cho (x-2)
b, ( 9x^3+3x^2-6x-2a) chia hết cho (x+1)
c, Tìm a,b,c để ax^3+bx^2+c chia hết cho x+2, chia cho x^2-1
Sử dụng định lý bơdu để tính nhá các cậu
Cảm ơn nhìu ạ
1. tìm x
a. (4x^4 + 3x^3) : (-x^3) + (15x^2 + 6x) : (3x) = 0
b. (x^2 - 1/2x) : 2x-(3x-1)^2 : (3x-1) = 0
2. tìm n thuộc N để phép chia là phép chia hết
a. (14x^5 - 7x^3 + 2x) : 7x^n
b. (25x^7y^6 - 10x^5y^4 - 6x^3y^2) : (-3x^ny^n)
làm phép chia :
a) (x^4 -2x^3 + 2x -1) : (x^2 - 1)
b) (x^3 -8) : (x^2 + 2x +4)
c) (x^6 - 2x^5 + 2x^4 + 6x^3 - 4x^2)n: 6x^2
d) (-2x^5 + 3x^2 - 4x^3) :2x^2
e) (15x^3 - 10x^2 + x - 2) : (x - 2)
f) (2x^4 - 3x^3 - 3x^2 + 6x - 2) : (x^2 - 2)
b: =x-2
d: \(=-x^3+\dfrac{3}{2}-2x\)
Bài 1 : Ko thực hiện phép chia , hãy xem phép chia sau đây có là phép chia hết ko và tìm đa thức dư trong trg hợp ko chia hết :
a) \(\left(x^3+2x^2-3x+9\right):\left(x+3\right)\)
b) \(\left(9x^4-6x^3+15x^2+2x+1\right):\left(3x^2-2x+5\right)\)
b)\(\frac{9x^4-6x^3+15x^2+2x+1}{3x^2-2x+5}=\frac{3x^2.\left(3x^2-2x+5\right)+2x+1}{3x^2-2x+5}=3x^2+\frac{2x+1}{3x^2-2x+5}\)
=> đa thức dư trong phép chia là 2x+1
\(\frac{x^3+2x^2-3x+9}{x+3}=\frac{x^3+9x^2+27x+27-7x^2-30x-18}{x+3}=\frac{\left(x+3\right)^3-7x^2-30x-18}{x+3}\)
\(\left(x+3\right)^2-\frac{7x^2+21x+9x+18}{x+3}=\left(x+3\right)^2-\frac{7x.\left(x+3\right)+9.\left(x+3\right)-9}{x+3}\)
\(=\left(x+3\right)^2-\frac{\left(7x+9\right).\left(x+3\right)-9}{x+3}=\left(x+3\right)^2-\left(7x+9\right)-\frac{9}{x+3}\)
=> đa thức dư trong phép chia là 9
p/s: t mới lớp 7_sai sót mong bỏ qua :>