Tìm tập hợp tất cả các giá trị thực của m để đồ thị C m của hàm số y = x 4 − m x 2 + 2 m − 3 có 4 giao điểm với đường thẳng y = 1 , có hoành độ nhỏ hơn 3.
A. m ∈ 2 ; 11 \ 4
B. m ∈ 2 ; 5
C. m ∈ 2 ; + ∞ \ 4
D. m ∈ 2 ; 11
Cho hàm số y=f(x) có đồ thị như hình vẽ.
Tìm tập hợp tất cả các giá trị của m để đồ thị hàm số y = f x + m có 5 điểm cực trị.
A. m < 2.
B. m > 2.
C. m > − 2.
D. m < − 2.
Đáp án D
Dựa vào đồ thị hàm số, dễ thấy hàm số f x = x 3 + 3 x 2 − 1
Xét hàm số f x + m = x + m 3 + 3 x + m − 1 với x ∈ ℝ
Chú ý : Cực trị là điểm làm y' đổi dấu và f x = x = x 2 ⇒ f ' x = 2 x 2 x 2 = x x
Do đó f x + m = 3 x + m x + m + 2 . x x .
Khi đó y = f x + m có 5 điểm cực trị x + m = 0 x + m + 2 = 0 có 4 nghiệm phân biệt x = − m x = − 2 − m có 4 nghiệm − m > 0 − 2 − m > 0 ⇔ m < − 2
Cách 2: Đồ thị hàm số y = f x + m được suy ra từ
y = f x → y = f x + m → y = f x + m .
Đồ thị hàm số muốn có 5 điểm cực trị khi ở bước thứ 1ta dịch chuyển đồ thị sang phải nhiều hơn 2 đơn vị m < − 2
Câu 3 Để đồ thị hàm số \(y=-x^4-\left(m-3\right)x^2+m+1\) có điểm cực đạt mà không có điểm cực tiểu thì tất cả giá trị thực của tham số m là
Câu 4 Cho hàm số \(y=x^4-2mx^2+m\) .Tìm tất cả các giá trị thực của m để hàm số có 3 cực trị
Tập hợp tất cả các giá trị thực của tham số m để đường thẳng y = − 2 x + m cắt đồ thị của hàm số y = x + 1 x − 2 tại hai điểm phân biệt là:
A. 5 − 2 3 ; 5 + 2 3
B. − ∞ ; 5 − 2 6 ∪ 5 + 2 6 ; + ∞
C. − ∞ ; 5 − 2 3 ∪ 5 + 2 3 ; + ∞
D. − ∞ ; 5 − 2 6 ∪ 5 + 2 6 ; + ∞
Cho hàm số y = - x 3 + 4 x 2 + 1 có đồ thị (C) và điểm M(m ;1). Gọi S là tập hợp tất cả các giá trị thực của m để qua M kẻ được đúng 2 tiếp tuyến đến đồ thị (C). Tổng giá trị tất cả các phần tử của S bằng
A. 5
B. 40/9
C. 16/9
D. 20/3
Tập hợp tất cả các giá trị thực của tham số m để đồ thị hàm số y = 1 + x + 1 x 2 - m x - 3 m có đúng hai tiệm cận đứng là
Cho hàm số y=f(x) có đồ thị như hình vẽ bên. Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = f x + m có 5 điểm cực trị.
A. m ≤ − 1
B. m < − 1
C. m ≥ − 1
D. m > − 1
Cho hàm số y=f(x) có đồ thị như hình vẽ bên. Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = f x + m có 5 điểm cực trị.
A. m ≤ − 1
B. m < − 1
C. m ≥ − 1
D. m > 1
Đáp án B.
Hàm số y = f x + m là một hàm số chẵn nên đồ thị đối xứng qua trục Oy. Mặt khác y = f x + m = f x + m ∀ x ≥ 0 . Ta có phép biến đổi từ đồ thị hàm số y = f x thành đồ thị hàm số y = f x + m :
* Nếu m > 0:
- Bước 1: Tịnh tiến đồ thị hàm số y = f x sang trái m đơn vị.
- Bước 2: Xóa phần nằm bên trái Oy của đồ thị thu được ở Bước 1.
- Bước 3: Lấy đối xứng đồ thị thu được ở Bước 2 qua Oy.
* Nếu m=0 :
- Bước 1: Tịnh tiến đồ thị hàm số y = f x sang phải m đơn vị.
- Bước 2: Xóa phần nằm bên trái Oy của đồ thị thu được ở Bước 1.
- Bước 3: Lấy đối xứng đồ thị thu được ở Bước 2 qua Oy.
Quan sát ta thấy đồ thị hàm số y = f x có 2 điểm cực trị.
Để đồ thị hàm số y = x + m có 5 điểm cực trị thì nhánh bên phải Oy của đồ thị hàm số y = x + m phải có 2 điểm cực trị => Điểm cực trị của đồ thị hàm số y = f x phải được tịnh tiến sang phải O y ⇒ m < − 1 .
Cho hàm số y=f(x) liên tục trên R và có đồ thị như hình vẽ
Tập hợp tất cả các giá trị thực của m để phương trình f e x 2 = m có đúng hai nghiệm thực là
A. 0 ∪ 4 ; + ∞
B. [0;4]
C. [4;+∞)
D. {0;4}
Cho hàm số y=f(x) liên tục trên ℝ và có đồ thị như hình vẽ
Tập hợp tất cả các giá trị thực của m để phương trình f e x 2 = m có đúng hai nghiệm thực là
A. 0 ∪ 4 ; + ∞
B. 0 ; 4
C. [ 4 ; + ∞ )
D. 0 ; 4
Cho hàm số y = - x 3 + 3 x 2 - 2 có đồ thị (C) và điểm A (m;2). Tìm tập hợp S là tất cả các giá trị thực của m để có 3 tiếp tuyến của (C) đi qua A
A. S = - ∞ ; - 1 ∪ 4 3 ; 2 ∪ 2 ; + ∞
B. S = - ∞ ; - 2 ∪ 5 2 ; 2 ∪ 2 ; + ∞
C. S = - ∞ ; - 1 ∪ 5 3 ; 2 ∪ 2 ; + ∞
D. S = - ∞ ; - 1 ∪ 5 3 ; 3 ∪ 3 ; + ∞