Tìm x và y thuộc Z sao cho: -3xy+3x-2y=-9
Tìm 2 số nguyên a và b sao cho a+b=a.b
bài 1:tìm số nguyên n sao cho:
a)n+3 chia hết cho n-1
b) 4n+3 chia hết cho 2n+1
bài 2:tìm cặp số a,b thuộc Z sao cho:
a) a.b=13
b) a.b=-10
bài 3:tìm các số nguyên x,y sao cho:
(2.x-1).(y+4)=11
bài 1:
a)<=>(n-1)+4 chia hết n-1
=>4 chia hết n-1
=>n-1\(\in\){-1,-2,-4;1,2,4}
=>n\(\in\){0,-1,-3,2,3,5}
b)<=>2(2n+1)+2 chia hết 2n+1
=>4 chia hết 2n+1
=>2n+1\(\in\){-1,-2,-4,1,2,4}
=>n\(\in\){-1;-3;-7;3;5;9}
bài 3 : <=>2y+8+xy+4x-1y-4=11
=>(8-4)+(2y-1y)+xy+4x=11
=>4+1y+x.y+x.4=11
=>1y+x.(x+y)=11-4
=>y+x.x+y=8
=>(x+y)^2=8
=>x+y=3
=>x và y là các số có tổng =3 ( bn tự liệt kê nhé )
1)Tìm các số nguyên dương x,y,z sao cho
x+3=2y
3x+1=4z
2) Tìm a,b thuộc Z sao cho
a+2 chia hết cho b và b+3 chia hết cho a
Hai bài toán rất hay và lạ! Xin cảm ơn bạn Tuấn Minh.
Và mình không hiểu người post cái bài dài dài kia (bạn Thành - sau mà đổi tên là không biết tên gì nốt) nói gì luôn. @@@.
1./ Tìm các số nguyên dương x;y;z sao cho: \(\hept{\begin{cases}x+3=2^y\left(1\right)\\3x+1=4^z\left(2\right)\end{cases}}\)
Ta thấy y=0; 1 không phải là nghiệm của bài toán.Với y =2 thì x=1; z=1 là 1 nghiệm của bài toán.Với y>=3 thì:Từ (2) suy ra: \(3x=4^z-1=\left(4-1\right)\left(4^{z-1}+4^{z-2}+...+4^2+4+1\right)\)\(\Leftrightarrow x=4^{z-1}+4^{z-2}+...+4^2+4+1\)
Thay vào (1) ta có: \(\left(1\right)\Leftrightarrow4^{z-1}+4^{z-2}+...+4^2+4+1+3=2^y\)\(\Leftrightarrow4^{z-1}+4^{z-2}+...+4^2+4+4=2^y\)
\(\Leftrightarrow8\cdot2\cdot4^{z-3}+8\cdot2\cdot4^{z-4}+...+8\cdot2\cdot4+8\cdot2+8=2^y\)
\(\Leftrightarrow8\cdot\left(2\cdot4^{z-3}+2\cdot4^{z-4}+...+2\cdot4+2+1\right)=8\cdot2^{y-3}\)
\(\Leftrightarrow\left(2\cdot4^{z-3}+2\cdot4^{z-4}+...+2\cdot4+2+1\right)=2^{y-3}\)
Ta thấy vế trái lẻ nên đạt được dấu bằng chỉ khi y=3; khi đó x=5 và z=2.
Vậy bài toán có 2 bộ nghiệm nguyên là: \(\hept{\begin{cases}x=1;y=2;z=1\\x=5;y=3;z=2\end{cases}}\) Bạn phải hiểu một điều đơn giản: với người khác thì vấn đề của họ có ưu tiên số 1. Bạn cần gấp không có nghĩa là họ phải vứt việc của họ để chạy tới giúp. Vì mình có phải cái rốn của vũ trụ đâu. Đấy là chưa kể có người bó tay, có người không muốn giúp.
Mà bạn đóng 1 chủ đề đi. 1 vấn đề thì mở 2 chủ đề để làm gì?
------
Có thể bạn sẽ nói: tôi không cần nữa, nhưng tôi gửi lên vì có thể ai đó cũng quan tâm.
Tôi dùng phương pháp "cần cù"
---------------
1. Ta tìm nghiệm x, y > 0. Ta tìm nghiệm y ≤ x, các nghiệm còn lại có được bằng cách hoán vị x và y
3x + 1 ≥ 3y + 1 = kx, với k là số tự nhiên => k = 1, 2, 4 (3y + 1 không chia hết cho 3)
Với k = 1 => 3y + 1 = x, 3x + 1 = 9y + 4 chia hết cho y <=> 4 chia hết cho y <=> y = 1 và x = 3y + 1 = 4, hoặc y = 2 và x = 3y + 1 = 7, hoặc y = 4 và x = 3y + 1 = 13.
Với k = 2 => 3y + 1 = 2x, 3x + 1 = (9y + 5) / 2 = my (với m tự nhiên)
=> (2m - 9)y = 5 => y là ước của 5 <=> y = 1 và x = (3y + 1) / 2 = 2, hoặc y = 5 và x = (3y + 1) / 2 = 8
Với k = 4 => 3x + 1 ≥ 4x => 1 ≥ x ≥ 1 => x = 1 => 3x + 1 = 4 chia hết cho y <=> y = 1, 2 hoặc 4
=> nghiệm (x, y) = (1, 1), (1, 2), (1, 4), (2, 1), (4, 1), (7, 2), (8, 5), (13, 4) và (hoán vị) (2, 7), (5, 8), (4, 13)
2. Ta tìm 2 nghiệm x, y < 0. Đặt x1 = -x > 0, y1 = -y > 0.
3x + 1 = -3x1 + 1 = - (3x1 - 1) chia hết cho y = -y1, tức (3x1 - 1) chia hết cho y1. Tương tự (3y1 - 1) chia hết cho x1. Ta tìm x ≤ y, tức y1 ≤ x1, các nghiệm còn lại có được bằng cách hoán vị x và y.
3x1 - 1 ≥ 3y1 - 1 = kx1, với k là số tự nhiên => k = 1, 2
Với k = 1=> x1 = 3y1 - 1, 3x1 - 1 = 9y1 - 4 chia hết cho y1 <=> 4 chia hết cho y1 <=> y1 = 1 và x1 = 2, hoặc y1 = 2 và x1 = 5, hoặc y1 = 4 và x1 = 11
Với k = 2 => 3y1 - 1 = 2x1, 3x1 - 1 = (9y1 - 5) / 2 = my1 (với m tự nhiên)
=> (9 - 2m)y1 = 5 => y1 là ước của 5 <=> y1 = 1 và x1 = (3y1 - 1) / 2 = 1, hoặc y1 = 5 và x1 = 7
=> nghiệm (x, y) = (-11, -4), (-7, -5), (-5, -2), (-2, -1), (-1, -1) và (-1, -2), (-2, -5), (-4, -11), (-5, -7)
3. Ta tìm nghiệm y < 0 < x, nghiệm x < 0 < y có được bằng cách hoán vị x và y.
Ta đặt y1 = - y > 0.
3x + 1 chia hết cho y = -y1, tức chia hết cho y1. 3y + 1 = -(3y1 - 1) chia hết cho x, tức (3y1 - 1) chia hết cho x.
3a. y1 ≤ x
3x + 1 ≥ 3y1 + 1 > 3y1 - 1 = kx => k = 1, 2 (3y1 - 1 không chia hết cho 3)
Với k = 1 => x = 3y1 - 1 => 3x + 1 = 9y1 - 2 chia hết cho y1 <=> 2 chia hết cho y1 <=> y1 = 1 và x = 3y1 - 1 = 2 hoặc y1 = 2 và x = 5
Với k = 2 => 3y1 - 1 = 2x => 3x + 1 = (9y1 - 1) / 2 = my1(m tự nhiên)
(9 - 2m)y1 = 1 => y1 = 1 => x = (3y1 - 1) / 2 = 1
=> nghiệm (x, y) = (1, -1), (2, -1), (5, -2)
3b. x < y1
ky1 = 3x + 1 < 3y1 + 1 => k = 1, 2 (3x + 1) không chia hết cho 3)
Với k = 1 => y1 = 3x + 1 => 3y1 - 1 = 9x + 2 chia hết cho x <=> 2 chia hết cho x <=> x = 1 và y1 = 3x + 1 = 4, hoặc x = 2 và y1 = 7
Với k = 2 => 2y1 = 3x + 1 => 3y1 - 1 = (9x + 1) / 2 = mx (m tự nhiên)
=> (2m - 9)x = 1 => x = 1 => y1 = (3x + 1) / 2 = 2
=> nghiệm (x, y) = (1, -2), (1, -4), (2, -7)
Vậy nghiệm x, y khác dấu là: (x, y) = (1, -1), (2, -1), (5, -2), (1, -2), (1, -4), (2, -7) và (hoán vị) (-1, 1), (-1, 2), (-2, 5), (-2, 1), (-4, 1), (-7, 2)
-------------
Kết luận: tất cả các nghiệm:
(x, y) = (-11, -4), (-7, -5), (-7, 2), (-5, -7), (-5, -2), (-4, -11), (-4, 1), (-2, -5), (-2, -1), (-2, 1), (-2, 5), (-1, -2), (-1, -1), (-1, 1), (-1, 2), (1, -4), (1, -2), (1, -1), (1, 1), (1, 2), (1, 4), (2, -7), (2, -1), (2, 1), (2, 7), (4, 1), (4, 13), (5, -2), (5, 8), (7, 2), (8, 5), (13, 4)
1. Tìm 2 số nguyên sao cho tổng của chúng và tích của chúng là 2 số đối nhau
2.Tìm các số nguyên x và y sao cho
a;x.y+3x -7y-21=0
b;x.y -2x+3y=1
3.Cho a và v là các số nguyên.Chứng minh:|a.b|=|a|.|b|
bao minh bai nay di :n-1 chia het cho n+3
a. tìm x thuộc z sao cho (x+1 ) thuộc ước (2 ngũ x+9)
b. tìm cặp số nguyên x, y : xy + y -3x = 5
a: \(\Leftrightarrow x+1\in\left\{1;-1;7;-7\right\}\)
hay \(x\in\left\{0;-2;6;-8\right\}\)
1. Tìm x,y thuộc Z, biết :
a) xy + 3x - 7y = 21
b) xy - 3x - 2y = 11
c) x2 + xy + y = 18
2. Cho a,b, c thuộc Z :
a.b - a.c + b.c - c2 = -1 . Chứng tỏ 2 số a và b đối nhau.
3. Cho 16 số nguyên trong đó tích của 3 số bất kì là 1 số âm. Chứng minh tích của 16 số đó là 1 số dương .
GIÚP MIK NHANH NHÉ !
Mk làm mẫu câu a nha
a, => xy+3x-7y-21 = 0
=> (xy+3x)-(7y+21) = 0
=> x.(y+3)-7.(y+3) = 0
=> (y+3).(x-7) = 0
=> y+3=0 hoặc x-7=0
=> x=7 hoặc y=-3
Tk mk nha
\(a)\) \(xy+3x-7y=21\)
\(\Leftrightarrow\)\(x\left(y+3\right)-\left(7y+21\right)=0\)
\(\Leftrightarrow\)\(x\left(y+3\right)-7\left(y+3\right)=0\)
\(\Leftrightarrow\)\(\left(x-7\right)\left(y+3\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-7=0\\y+3=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=7\\y=-3\end{cases}}\)
Vậy \(x=7\) và \(y=-3\)
a) cho a thuộc Z, chứng tỏ rằng a + |a| là số chẵn
b) chứng tỏ rằng không tồn tại các số nguyên x,y,z sao cho: | x - 2y| + |4y - 5z| + |x - 3x| = 2011
a) Xét :
\(a< 0\)\(\Rightarrow|a|=-a\)
\(\Rightarrow a+|a|=a+\left(-a\right)=0\)(là số chẵn)
\(a\ge0\)\(\Rightarrow|a|=a\)
\(\Rightarrow|a|+a=a+a=2a\)(luôn chẵn với mọi a nguyên)
Vậy ta có đpcm
b) Phần b) chỗ dấu giá trị tuyệt đối thứ 3 có phải là z-3x không ạ ?
Gỉa sử tồn tại các số nguyên x,y,z thỏa mãn đề bài .
Ta có : \(\left(x-2y\right)+\left(4y-5z\right)+\left(z-3x\right)=-2x+2y-4z\)(là một số chẵn)
Áp dụng cm ở phần a), ta có:
\(|x-2y|+\left(x-2y\right)+|4y-5z|+\left(4y-5z\right)+|z-3x|+\left(z-3x\right)\)là 1 số chẵn
\(\Rightarrow|x-2y|+|4y-5z|+|z-3x|\)là một số chẵn
Mà \(2011\)là số lẻ
\(\Rightarrow\)Mẫu thuẫn với giả thiết
\(\Rightarrow\)Điều giả sử là sai
\(\Rightarrowđpcm\)
a) Tìm x thuộc Z sao cho -7x + 11 chia hết cho -2x - 1
b) Tìm các cặp số nguyên x;y thoả mãn -3xy + 4y - 6x = 27
giúp mình với cần gấp toán 7 b1 . cho 2 đa thức M=2m^2-3xy-y^2+(-3x^2+2xy-y^2) tính a M+N b M-N
b2 tìm đa thức M sao cho tổng của M và đa thức x^2y^2-y^3+2xz-z^2 ( không chứa biến x)
tui quên ghi đa thức N của bài 1
N=x^2 - xy +3y^2
Bạn gì đó ? có facebook không ạ ? kết bạn để dễ nói đi ạ ! fb tui tên Khánh Thư ạ
Bài 10. Tìm số tự nhiên n, biết rằng: 1 + 2 + 3 + ..... + n = 820
Bài 11. Tìm các số tự nhiên x, y, sao cho:
a/ (2x+1)(y-3) = 10
b/ (3x-2)(2y-3) = 1
c/ (x+1)(2y-1) = 12
d/ x + 6 = y(x-1)
e/ x-3 = y(x+2)
f/ x + 2y + xy = 5
g/ 3x + xy + y = 4
Bài 12. Tìm số nguyên tố p sao cho:
a/ p + 2 và p + 4 là số nguyên tố
b/ p + 94 và p + 1994 cũng là số nguyên tố