Trong không gian Oxyz, cho hai mặt phẳng P : 2 x − y + z − 2 = 0 v à Q : 2 x − y + z + 1 = 0 . Số mặt cầu đi qua A 1 ; − 2 ; 1 và tiếp xúc với hai mặt phẳng (P), (Q) là
A. 0
B. 1
C. Vô số
D. 2
Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P): x + 2 y - z - 1 = 0 , (Q): 3x-(m+2)y+(2m-1)z+3=0. Tìm m để hai mặt phẳng (P), (Q) vuông góc với nhau.
Trong không gian Oxyz, cho hai đường thẳng △ : x - 1 - 2 = y + 2 1 = z - 3 2 và mặt phẳng (P): x+y-2z+6=0. Góc giữa đường thẳng △ với mặt phẳng (P) bằng
A. 30 °
B. 45 °
C. 60 °
D. 135 °
trong không gian với hệ trục tọa độ oxyz, cho 2 mặt phẳng: (d) : x-z+1=0; (B) : x-4y+z-3=0. lập pt mặt phẳng (p) vuông góc với hai mặt phẳng (d),(B) và tiếp xúc với mặt cầu (S): (x-1)^2 + (y-1)^2 + (z-1)^2 = 4
Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P):x-y+z-1=0 và (Q):2x+y+1=0. Viết phương trình mặt phẳng đi qua A(1;-1;-2) vuông góc với hai mặt phẳng (P) và (Q).
Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P):x–y+z -1= 0 và (Q):2x+y+1= 0. Viết phương trình mặt phẳng đi qua A(1;-1;-2) vuông góc với hai mặt phẳng (P) và (Q).
A. x+2y+3z+7=0.
B. x-2y+3z+3=0.
C. x+2y-3z–5=0.
D. x–2y–3z-9=0.
Trong không gian Oxyz, cho hai mặt phẳng (P):2x - y + z = 0, (Q):x - z = 0. Giao tuyến của hai mặt phẳng (P) và (Q) có một vectơ chỉ phương là:
A. a ⇀ = (1; 0: -1)
B. a ⇀ = (1; -3: 1)
C. a ⇀ = (1; 3: 1)
D. a ⇀ = (2; -1: 1)
Trong không gian Oxyz, cho ba mặt phẳng (P), (Q), (R) lần lượt có phương trình là ( m 2 + m)x - (m + 2)y + z = 0; x + y + z = 0; 2x + y - z = 0, trong đó m là tham số. Với những giá trị nào của m thì mặt phẳng (P) đồng thời vuông góc với cả hai mặt phẳng (Q) và (R)?
A. m = 1
B. m = -1
C. m = -3/2
D. m = -3/2 hoặc m = -1
Đáp án A
Ta có:
Mặt phẳng (P) đồng thời vuông góc với cả hai mặt phẳng (Q) và (R) khi và chỉ khi
Trong không gian với hệ trục tọa độ Oxyz, cho hai mặt phẳng α : x + y - z + 1 = 0 v à β : - 2 x + m y + 2 z - 2 = 0 . Tìm m để mặt phẳng (α) song song với mặt phẳng (β).
A. m = 2
B. m = 5
C. Không tồn tại
D. m = -2
Trong không gian Oxyz, cho hai mặt phẳng P : 2 x - 2 y + z - 2 = 0 và Q : 2 x - y + z + 1 = 0 . Số mặt cầu đi qua A(1;-2;1) và tiếp xúc với hai mặt phẳng (P), (Q) là
A. 1
B. 2
C. 0
D. Vô số
HD: Dễ thấy (P)//(Q). Gọi (R) là mặt phẳng song song và cách đều 2 mặt phằng (P) và (Q)