Tính S=23+33+43+53+...+203
Biết: 13+23+33+....+103=3025. Tính S= 23+43+63+...+203
huỳnh thị ngân hà, nau te, trần như tính sao ra z?
S = 13+10+23+20+33+30+...+103+100
S = 13+23+33+...+103+10.100
S = 3025+1000
S = 4025
6020 , chắc chắn đúng 10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000%
Bài Toàn 16 : Tính tổng
a) S = 1 + 2 + 22 + 23 + … + 22017
b) S = 3 + 32 + 33 + ….+ 32017
c) S = 4 + 42 + 43 + … + 42017
d) S = 5 + 52 + 53 + … + 52017
a.
$S=1+2+2^2+2^3+...+2^{2017}$
$2S=2+2^2+2^3+2^4+...+2^{2018}$
$\Rightarrow 2S-S=(2+2^2+2^3+2^4+...+2^{2018}) - (1+2+2^2+2^3+...+2^{2017})$
$\Rightarrow S=2^{2018}-1$
b.
$S=3+3^2+3^3+...+3^{2017}$
$3S=3^2+3^3+3^4+...+3^{2018}$
$\Rightarrow 3S-S=(3^2+3^3+3^4+...+3^{2018})-(3+3^2+3^3+...+3^{2017})$
$\Rightarrow 2S=3^{2018}-3$
$\Rightarrow S=\frac{3^{2018}-3}{2}$
Câu c, d bạn làm tương tự a,b.
c. Nhân S với 4. Kết quả: $S=\frac{4^{2018}-4}{3}$
d. Nhân S với 5. Kết quả: $S=\frac{5^{2018}-5}{4}$
Biết 13+23+33+.......+103 = 580. Tính S = 23+43+63+.......+203.
Giải chi tiết giùm nha!
\(S=23+43+63......+203\)
\(S=26+46+66......+206-3.10\)
\(S=2.13+2.23+3.33......+2.103-3.10\)
\(S=2.\left(13+23+33......+103\right)-3.10\)
\(S=2.580-3.10=1130\)
7/3*13+ 7/13*23+ 7/23*33+ 7/33*43+ 7/43*53+ 7/53*63
\(A=\frac{7}{3\times13}+\frac{7}{13\times23}+...+\frac{7}{53\times63}\)
\(A=\frac{7}{10}.\left[\left(\frac{1}{3}-\frac{1}{13}\right)+\left(\frac{1}{13}-\frac{1}{23}\right)+....+\left(\frac{1}{53}-\frac{1}{63}\right)\right]\)
\(A=\frac{7}{10}.\left(\frac{1}{3}-\frac{1}{13}+\frac{1}{13}-\frac{1}{23}+....+\frac{1}{53}-\frac{1}{63}\right)\)
\(A=\frac{7}{10}.\left(\frac{1}{3}-\frac{1}{63}\right)\)
\(A=\frac{7}{10}.\frac{20}{63}\)
\(A=\frac{2}{9}\)
a) S=1+2+22+23+...+22022
b)S=3+32+33+...+32022
c)S=4+42+43+...+42022
d)S=5+52+53+...+52022
a) \(S=1+2+2^2+..+2^{2022}\)
\(2S=2+2^2+2^3+...+2^{2023}\)
\(2S-S=2+2^2+2^3+...+2^{2023}-1-2-2^2-...-2^{2022}\)
\(S=2^{2023}-1\)
b) \(S=3+3^2+3^3+...+3^{2022}\)
\(3S=3^2+3^3+...+3^{2023}\)
\(3S-S=3^2+3^3+....+3^{2023}-3-3^2-...-3^{2022}\)
\(2S=3^{2023}-3\)
\(\Rightarrow S=\dfrac{3^{2023}-3}{2}\)
c) \(S=4+4^2+4^3+...+4^{2022}\)
\(4S=4^2+4^3+...+4^{2023}\)
\(4S-S=4^2+4^3+...+4^{2023}-4-4^2-...-4^{2022}\)
\(3S=4^{2023}-4\)
\(S=\dfrac{4^{2023}-4}{3}\)
d) \(S=5+5^2+...+5^{2022}\)
\(5S=5^2+5^3+...+5^{2023}\)
\(5S-S=5^2+5^3+...+5^{2023}-5-5^2-...-5^{2022}\)
\(4S=5^{2023}-5\)
\(S=\dfrac{5^{2023}-5}{4}\)
A=7 phần 3×13+7 phần 13×23+7 phần 23×33+7 phần 33×43+7 phần 43×53+7 phần 53×63
A=7*(1/3*13+1/13*23+1/23*33+1/33*43+1/43*53+1/53*63)
A=7/10(1/3-1/13+1/13-1/23+1/23-1/33+1/33-1/43+1/43-1/53+1/53-1/63)
A=7/10*(1/3-1/63)
A=7/10*20/63
A=2/9
biết 13+23+...+103=3025. tính: S=23+43+.....+203
S = 1130 đó bạn.
Nhớ **** giúp mình nhé !
biết 13 + 23 + ...........+103 =3025 tính S= 23+43+............+203=?
biết 13+23+...+103=3025. tính S=23+43+63+...+203
Ta có:S=23+43+63+…+203
=>S=23+43+63+…+203+3+3+3+…+3-3-3-3-…-3
=>S=(23+3)+(43+3)+(63+3)+…+(203+3)-(3+3+3+…+3)
=>S=26+46+66+…+206-(3+3+3+…+3)
Từ 26 đến 206 có:
(206-26):20+1=10(số)
=>S=26+46+66+…+206-3.10
=>S=2.(13+23+33+…+103)-30
mà 13+23+33+…+103=3025
=>S=2.3025-30
=>S=6050-30
=>S=6020
Vậy S=6020.