Hàm số y = x 4 - 4 x 2 + 4 đạt cực tiểu tại những điểm nào?
A. x = ± 2 ;x=0
B. x = ± 2
C. x = 2 ;x=0
D. x = - 2
Hàm số y = x 4 − 4 x 2 + 4 đạt cực tiểu tại những điểm nào?
A. x = ± 2 ; x = 0.
B. x = ± 2
C. x = 2 ; x = 0.
D. x = - 2
Hàm số y = x 4 − 4 x 2 + 4 đạt cực tiểu tại những điểm nào?
A. x = ± 2 , x = 0
B. x = ± 2
C. x = 2 , x = 0
D. x = 2
Đáp án C
y ' = 4 x 3 − 8 x y ' ' = 12 x 2 − 8 y ' = 0 ⇔ 4 x 3 − 8 x = 0 ⇔ x = 0 x = ± 2
Vẽ bảng biến thiên dễ dàng suy ra hàm số đạt cực tiểu tại x = ± 2
Hàm số y = x4 – 4x2 + 4 đạt cực tiểu tại những điểm nào?
A. x = ± √2, x = 0
B. x = ± √2
C. x = √2, x = 0
D. x = - √2
Đáp án B
Do a = 1 > 0 nên hàm số đạt cực tiểu tại x = 2
Bài 1. Cho hàm số: y = 1/3 x3 - mx2 +(m2 - m + 1)x + 1. Với giá trị nào của m thì hàm số đạt cực đại tại điểm x = 1
Bài 2. Cho hàm số y = 1/3 x3 + (m2 - m + 2) x2 + (3m2 + 1)x + m - 5. Tìm m để hàm số đạt cực tiểu tại x = -2 .
Bài 3. Cho hàm số y = 1/3 x3 - (m+1) x2 + (m2 + 2m)x + 1 (m là tham số). Tìm tất cả tham số thực m để hàm số đạt cực tiểu tại x = 2.
Bài 4. Tìm tất cả tham số thực m để hàm số y = (m-1)x4 - (m2 - 2) x2 + 2016 đạt cực tiểu tại
x = -1.
Bài 5. Tìm giá trị của tham số m để hàm số y = x3/3 +(2m - 1)x2 + (m - 9)x + 1 đạt cực tiểu tại
x = 2 .
Đừng hỏi tại sao tui ngu!!!
Giúp.com.vn
tìm m để đồ thị hàm số :
1) \(y=x^4-2\left(m+1\right)x^2-2m-1\) đạt cực đại tại x=1
2) \(y=x^4-\left(m+1\right)x^{2^{ }}+1\) đạt cực tiểu tại x=-1
1.
\(y'=4x^3-4\left(m+1\right)x\)
\(y''=12x-4\left(m+1\right)\)
Hàm đạt cực đại tại x=1 khi: \(\left\{{}\begin{matrix}y'\left(1\right)=0\\y''\left(1\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4-4\left(m+1\right)=0\\12-4\left(m+1\right)< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m=0\\m>2\end{matrix}\right.\)
Không tồn tại m thỏa mãn
2.
\(y'=4x^3-2\left(m+1\right)x\)
\(y''=12x^2-2\left(m+1\right)\)
Hàm đạt cực tiểu tại x=-1 khi:
\(\left\{{}\begin{matrix}y'\left(-1\right)=0\\y''\left(-1\right)>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-4+2\left(m+1\right)=0\\12-2\left(m+1\right)>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m=1\\m< 5\end{matrix}\right.\) \(\Rightarrow m=1\)
Cho hàm số y=f(x) có đạo hàm liên tục trên R và có đồ thị hàm số y=f' (x) như hình vẽ bên. Xét hàm số g(x)=f(x^2-3) và các mệnh đề sau:
1. Hàm số g(x) có 3 điểm cực trị.
2. Hàm số g(x)đạt cực tiểu tại x = 0.
3. Hàm số g(x)đạt cực đại tại x = 2.
4. Hàm số g(x)đồng biến trên khoảng (-2;0).
5. Hàm số g(x)nghịch biến trên khoảng (-1;1).
Có bao nhiêu mệnh đề đúng trong các mệnh đề trên?
A. 1.
B. 4.
C. 3.
D. 2.
Cho hàm số liên tục trên khoảng (a;b) và x 0 ∈ ( a ; b ) . Có bao nhiêu mệnh đề đúng trong các mệnh đề sau?
(1) Hàm số đạt cực trị tại điểm x 0 khi và chỉ khi f ' ( x 0 ) = 0 .
(2) Nếu hàm số y = f ( x ) có đạo hàm và có đạo hàm cấp hai tại điểm x 0 thỏa mãn điều kiện f ' ( x 0 ) = f ' ' ( x 0 ) = 0 thì điểm x 0 không phải là điểm cực trị của hàm số y = f ( x ) .
(3) Nếu f'(x) đổi dấu khi x qua điểm x 0 thì điểm x 0 là điểm cực tiểu của hàm số y = f ( x ) .
(4) Nếu hàm số y = f ( x ) có đạo hàm và có đạo hàm cấp hai tại điểm x 0 thỏa mãn điều kiện f ' ( x 0 ) = 0 , f ' ' ( x 0 ) > 0 thì điểm x 0 là điểm cực tiểu của hàm số y = f ( x ) .
A. 1
B. 2
C. 0
D. 3
Đáp án A
Phương pháp:
Dựa vào khái niệm cực trị và các kiến thức liên quan.
Cách giải:
(1) chỉ là điều kiện cần mà không là điều kiện đủ.
VD hàm số y = x3 có y' = 3x2 = 0 ⇔ x = 0. Tuy nhiên x = 0 không là điểm cực trị của hàm số.
(2) sai, khi f''(x0) = 0, ta không có kết luận về điểm x0 có là cực trị của hàm số hay không.
(3) hiển nhiên sai.
Vậy (1), (2), (3): sai; (4): đúng
Câu 3 Để đồ thị hàm số \(y=-x^4-\left(m-3\right)x^2+m+1\) có điểm cực đạt mà không có điểm cực tiểu thì tất cả giá trị thực của tham số m là
Câu 4 Cho hàm số \(y=x^4-2mx^2+m\) .Tìm tất cả các giá trị thực của m để hàm số có 3 cực trị
Tìm tất cả các giá trị nguyên của m để hàm số y=x^8+(m-2)x^5-(m^2-4)x^4+1 đạt cực tiểu tại x=0.
m= 2
nha bạn
bạn muốn tl rõ hơn thì bạn tìm trên google