Tìm các số nguyên để phép chia sau là phép chia hết : x^2 +2x^2 +15 chia hết cho x+3
Tìm các số nguyên để phép chia sau là phép chia hết : x^2 +2x^2 +15 chia hết cho x+3
Ta có: \(x^2+2x^2+15=3x^2+15\)
Thực hiện phép chia, ta được:
Suy ra để \(x^2+2x^2+15\) chia hết cho x + 3 thì - (9 - y)x + (15 - 3y) = 0
Hay - (9 - y)x = 15 - 3y
Khi đó \(x=\dfrac{15-3y}{-9+y}\) hay \(\left(15-3y\right)⋮\left(-9+y\right)\)
Hay \(\left[\left(15-3y\right)-3\left(-9+y\right)\right]⋮\left(-9+y\right)\)
Hay \(42⋮\left(-9+y\right)\)
Khi đó (-9 + y) ϵ Ư(42) = {1; -1; 2; -2; 3; -3; 6; -6; 7; -7; 14; -14; 21; -21; 42; -42}
Xét bảng
-9 + y | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 | 7 | -7 | 14 | -14 | 21 | -21 | 42 | -42 |
y | 10 | 8 | 11 | 7 | 12 | 6 | 15 | 3 | 16 | 2 | 23 | -5 | 30 | -12 | 51 | -33 |
\(x=\dfrac{15-3y}{-9+y}\) | -15 | 9 | -9 | 3 | -7 | 1 | -5 | -1 |
-33/7 (loại) |
-9/7 (loại) | -27/7 (loại) | -15/7 (loại) | -25/7 (loại) | -17/7 (loại) | -23/7 (loại) | -19/7 (loại) |
Vậy để \(x^2+2x^2+15\) chia hết cho x + 3 thì x ϵ {-15; 9; -9; 3; -7; 1; -5; -1}
Bài 1 : Tìm a để (5x3 - 3x2 + 2x +a) chia hết cho ( x +1)
Bài 2 : Tìm a để phép chia sau là phép chia hết :
a) ( x3 - x2 + 2x + a) chia hết cho x -1
b) x3 -2x2 -2x + a chia hết cho x +1
Bài 3 Tìm các giá trị a , b ,k để đa thức f(x) chia hết cho đa thức g(x)
a) f(x)= x4 -9x3 + 21x2 + x +k ; g (x) = x2 - x -2
b) f(x) = x4 - 3x3 + 3x2 + ax + b ; g(x) = x2 - 3x +4
Bài 1:
Ta có: \(5x^3-3x^2+2x+a⋮x+1\)
\(\Leftrightarrow5x^3+5x^2-8x^2-8x+10x+10+a-10⋮x+1\)
\(\Leftrightarrow a-10=0\)
hay a=10
Tìm số nguyên x nhỏ nhất để phép chia (-8):(2x+1) là phép chia hết. Giá trị của x là
Điều kiện: \(x\ne-\dfrac{1}{2}\), \(x\in Z\)
Để \(\left(-8\right)⋮\left(2x+1\right)\) thì \(\left(2x+1\right)\) là Ư(8)
Ta có: \(Ư\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
TH1: \(2x+1=-1\Leftrightarrow x=-1\)(TM)
TH2: \(2x+1=1\Leftrightarrow x=0\) (TM)
TH3: \(2x+1=-2\Leftrightarrow x=-\dfrac{3}{2}\) (KTM)
TH4: \(2x+1=2\Leftrightarrow x=\dfrac{1}{2}\left(KTM\right)\)
TH5: \(2x+1=-4\Leftrightarrow x=\dfrac{-5}{2}\left(KTM\right)\)
TH6: \(2x+1=4\Leftrightarrow x=\dfrac{3}{2}\left(KTM\right)\)
TH7:\(2x+1=-8\Leftrightarrow x=\dfrac{-9}{2}\left(KTM\right)\)
TH8: \(2x+1=8\Leftrightarrow x=\dfrac{7}{2}\left(KTM\right)\)
Suy ra \(x\in\left\{-1;0\right\}\)
Vậy số nguyên x nhỏ nhất để (-8):(2x+1) là phép chia hết là x=-1
Số nguyên nhỏ nhất mà 8 chia hết là 1
Mà x tỉ lệ thuận với (2x + 1), vậy:
\(2x+1=1\)
\(\Leftrightarrow x=0\)
Vậy x là số nguyên nhỏ nhất khi x = 0
x tỉ lệ thuận với (2x+1)
Để (-8):(2x+1) hết mà x có giá trị nhỏ nhất:
<=> (2x+1) có giá trị nhỏ nhất
Ư(-8)= {-8;-4;-2;-1;1;2;4;8}
2x+1 | -8 | -4 | -2 | -1 | 1 | 2 | 4 | 8 | |||
x | -9/2 | -5/2 | -3/2 | -1 | 0 | 1/2 | 3/2 | 7/2 | |||
| Loại | Loại | Loại | Nhận | Loại (Do 1>-1) | Loại | Loại | Loại | |||
=> Giá trị của x là -1
Tìm số nguyên x lớn nhất để phép chia (-8):(2x+1) là phép chia hết. Giá trị của x là
\(\Leftrightarrow2x+1=1\)
hay x=0
Bài 4 Tìm a để phép chia sau đây là phép chia hết
c) (6x^3-x^2-23x+a):(2x+3)
Bài 5 Tìm a để phép chia có dư
b) (x^2-x+a):(x-4) dư 3
Giúp mình với mng mình cần gấp ý
Bài 4:
c: Ta có: \(\dfrac{6x^3-x^2-23x+a}{2x+3}\)
\(=\dfrac{6x^3+9x^2-10x^2-15x-8x-12+a+12}{2x+3}\)
\(=3x^2-5x-4+\dfrac{a+12}{2x+3}\)
Để phép chia trên là phép chia hết thì a+12=0
hay a=-12
cho 2 đa thức A(x) =2x^3-x^2-x+1 và B(x) =x-2
a) Tìm thương và số dư của phép chia đa thức A(x) chia hết cho (B)
b) tìm số nguyên x để A(x) chia hết B(x)
a) \(A\left(x\right)=2x^3-x^2-x+1\)
\(=\left(2x^3-4x^2\right)+\left(3x^2-6x\right)+\left(5x-10\right)+11\)
\(=\left(x-2\right).\left(2x^2+3x+5\right)+11\)
Vậy \(A\left(x\right):B\left(x\right)=2x^2+3x+5\) dư \(11\)
b) Để \(A\left(x\right)⋮B\left(x\right)\) thì \(11⋮B\left(x\right)\)
\(\Rightarrow x-2\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
\(\Rightarrow x\inơ\left\{13;3;2;-9\right\}\)
Cho 2 đa thức
A=98x+13x2+6x5-x6-26-12x^4
B=1-x-x3
a) tìm thương và dư của phép chia A cho B
b) C/m nếu x là số nguyên thì thương của phép chia là số chia hết cho 6
c) Tìm các giá trị nguyên của x để dư của phép chia bằng 0( chia hết ý)
a: \(A=m^6-6m^5+10m^4+m^3+98m-26\)
\(=m^6-m^4+m^3-6m^5+6m^3-6m^2+11m^4-11m^2+11m-6m^3+6m-6+17m^2+81m-20\)
\(=m^3-6m^2+11m-6+\dfrac{17m^2+81m-20}{m^3-m+1}\)
b: \(C=m^3-6m^2+11m-6=\left(m-1\right)\left(m-3\right)\left(m-2\right)\) luôn chia hết cho 6
b: Để đa thức dư bằng 0 thì 17m^2+81m-20=0
=>m=-5 hoặc m=4/17
Thực hiện phép chia A = 2x^4-x^3-x^2-x+2 cho B=x^2+1. Tìm x nguyên để A chia hết cho B