Trong không gian tọa độ Oxyz, mặt phẳng chứa trục Oz và đi qua điểm I 1 ; 2 ; 3 có phương trình là
A. 2 x - y = 0
B. z - 3 = 0
C. x - 1 = 0
D. y - 2 = 0
Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng (P) đi qua điểm M(3;-4;7) và chứa trục Oz
A. ( P ) : 3 x + 4 z = 0 .
B. ( P ) : 4 x + 3 y = 0 .
C. ( P ) : 3 x + 4 y = 0 .
D. ( P ) : 4 y + 3 z = 0 .
Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng (P) đi qua điểm M(3;-4;7) và chứa trục Oz.
Đáp án B.
Ta có O M → = ( 3 ; - 4 ; 7 )
Vecto chỉ phương của trục Oz là k → = ( 0 ; 0 ; 1 )
Mặt phẳng (P) đi qua điểm M(3;-4;7) có vecto pháp tuyến
Vậy phương trình mặt phẳng
Trong không gian với hệ tọa độ Oxyz mặt phẳng α chứa trục Oz và đi qua điểm P(2;-3;5) có phương trình là
A. α : 2x + 3y = 0.
B. α : 2x - 3y = 0
C. α : 3x + 2y = 0
D. α : y + 2z = 0
mặt phẳng α chứa trục Oz nên phương trình có dạng
Lại có α đi qua điểm P(2;-3;5) nên
Vậy phương trình mặt phẳng α : 3x + 2y = 0
Chọn C.
Trong không gian Oxyz, có bao nhiêu đường thẳng đi qua điểm và cắt trục tọa độ Oz tại điểm N, cắt mặt phẳng tọa độ tại điểm M sao cho tam giác OMN vuông cân
A. Hai.
B. Vô số.
C. Ba.
D. Một
Trong không gian với hệ tọa độ Oxyz, mặt phẳng (P) chứa trục Oy và đi qua điểm M(1;1;-1) có phương trình là
A. x + z =0
B. x - y =0
C. x - z =0
D. y + z =0
Đáp án A
Gọi N(0;1;0) là điểm thuộc trục Oy ⇒ M N → = ( - 1 ; 0 ; 1 )
Gọi ⇒ u → = ( 0 ; 1 ; 0 ) là một véc tơ chỉ phương của đường thẳng Oy.
là một véc tơ pháp tuyến của (P)
Suy ra phương trình mp(P) là
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) chứa trục Oy và đi qua điểm M 1 ; 1 ; - 1 có phương trình là:
A. x - z = 0
B. y + z = 0
C. x - y = 0
D. x + z = 0
Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng (P) chứa trục Oz và điểm M(1;2;1).
A. (P): y – 2z = 0.
B. (P): 2x – y = 0.
C. (P): x – z = 0.
D. (P): x – 2y = 0.
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) chứa trục Oy và đi qua điểm M(1;1-1) có phương trình là
A. x-z=0
B. y+z=0
C. x-y=0
D. x+z=0
Ta có: O M ⇀ ( 1 ; 1 ; - 1 ) ; j ⇀ ( 0 ; 1 ; 0 )
Mặt phẳng (P) chứa trục Oy và đi qua điểm M(1;1-1) có một VTPT là n ⇀ = O M ⇀ ; j ⇀ = 1 ; 0 ; 1
Phương trình (P) là: 1 ( x - 0 ) + 0 + 1 ( z - 0 ) = 0 ⇔ x + z = 0
Chọn đáp án D.
Trong không gian với hệ tọa độ Oxyz, cho điểm M(3;2;1). Mặt phẳng (P) đi qua điểm M và cắt các trục tọa độ Ox, Oy, Oz lần lượt tại các điểm A, B, C không trùng với điểm gốc tọa độ sao cho M là trực tâm tam giác ABC. Trong các mặt phẳng sau, tìm mặt phẳng song song với mặt phẳng (P).
A. 3 x + 2 y + z + 14 = 0
B. 2 x + y + 3 z + 9 = 0
C. 3 x + 2 y + z - 14 = 0
D. 2 x + y + z - 9 = 0
Đáp án A.
Ta có A M ⊥ B C ⊥ O A ⇒ B C ⊥ O A M ⇒ B C ⊥ O M
Tương tự ta cũng có O M ⊥ A C ⇒ O M ⊥ P ⇒ P (P) nhận O M ¯ = 3 ; 2 ; 1 là vecto pháp tuyến.
Trong các đáp án, chọn đáp án mặt phẳng có vecto pháp tuyến có cùng giá với O M ¯ và không chứa điểm M thì thỏa.