Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thùy Chi
Xem chi tiết
Nguyễn Hoàng Minh
18 tháng 12 2021 lúc 10:05

Áp dụng BĐT Cauchy-Schwarz:

\(\dfrac{1}{x+y}+\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{z+x}\ge\dfrac{16}{3x+3y+2z}\\ \Leftrightarrow\dfrac{1}{3x+2y+2z}\le\dfrac{1}{16}\left(\dfrac{2}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{z+x}\right)\\ \Leftrightarrow\sum\dfrac{1}{3x+2y+2z}\le\dfrac{1}{16}\left(\dfrac{4}{x+y}+\dfrac{4}{y+z}+\dfrac{4}{z+x}\right)=\dfrac{4}{16}\cdot6=\dfrac{3}{2}\)

Dấu \("="\Leftrightarrow x=y=z=\dfrac{1}{3}\)

Khiêm Nguyễn Gia
Xem chi tiết
Hoai Bao Tran
Xem chi tiết
Hà Nam Phan Đình
10 tháng 11 2017 lúc 18:54

Ta có :

\(\dfrac{1}{3x+3y+2z}=\dfrac{1}{\left(2x+y+z\right)+\left(2y+x+z\right)}\)(1)

Áp dụng BĐT \(\dfrac{1}{x+y}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)

\(\Rightarrow\left(1\right)\le\dfrac{1}{4}\left(\dfrac{1}{x+y+x+z}+\dfrac{1}{y+x+y+z}\right)\le\dfrac{1}{4}\left(\dfrac{1}{4}\left(\dfrac{1}{x+y}+\dfrac{1}{x+z}+\dfrac{1}{x+y}+\dfrac{1}{y+z}\right)\right)\)

\(=\dfrac{1}{16}\left(\dfrac{2}{x+y}+\dfrac{1}{x+z}+\dfrac{1}{y+z}\right)\)

tương tự với hai ông còn lại sau đó cộng lại ta được:

\(\Sigma\dfrac{1}{3x+3y+2z}\le\dfrac{24}{16}=\dfrac{3}{2}\)

ĐạiPhú Doanh
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 3 2021 lúc 20:00

Thay \(x=\dfrac{1}{2};y=-1\) vào B, ta được:

\(B=\left[\left(\dfrac{1}{2}\right)^3-4\cdot\left(\dfrac{1}{2}\right)^2\cdot\left(-1\right)+3\cdot\left(-1\right)^2-4\right]:\left[3\cdot\left(\dfrac{1}{2}\right)^3-3\cdot\left(-1\right)^2-3\cdot\left(-1\right)\right]\)

\(=\left(\dfrac{1}{8}+4\cdot\dfrac{1}{4}+3\cdot1-4\right):\left(3\cdot\dfrac{1}{8}-3\cdot1+3\right)\)

\(=\left(\dfrac{1}{8}+1+3-4\right):\left(\dfrac{3}{8}-3+3\right)\)

\(=\dfrac{1}{8}\cdot\dfrac{8}{3}=\dfrac{1}{3}\)

Sách Giáo Khoa
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 5 2022 lúc 22:50

a: \(=\dfrac{1-2x+3+2y+2y-4}{6x^3y}=\dfrac{-2x+4y}{6x^3y}=\dfrac{-2\left(x-2y\right)}{6x^3y}=\dfrac{-x+2y}{3x^3y}\)

b: \(=\dfrac{x^2-2+2-x}{x\left(x-1\right)^2}=\dfrac{x\left(x-1\right)}{x\left(x-1\right)^2}=\dfrac{1}{x-1}\)

c: \(=\dfrac{3x+1+x^6-3x}{x^2-3x+1}\)

\(=\dfrac{x^6+1}{x^2-3x+1}\)

d: \(=\dfrac{x^2+38x+4+3x^2-4x-2}{2x^2+17x+1}\)

\(=\dfrac{4x^2+34x+2}{2x^2+17x+1}=2\)

nguyễn ngọc khánh
Xem chi tiết
Trên con đường thành côn...
25 tháng 8 2021 lúc 15:14

undefined

Nguyễn Lê Phước Thịnh
26 tháng 8 2021 lúc 1:23

a: \(\left(3x-1\right)\left(9x^2+3x+1\right)=27x^3-1\)

b: \(\left(1-\dfrac{x}{5}\right)\left(\dfrac{x^2}{25}+\dfrac{x}{5}+1\right)=1-\dfrac{x^3}{125}\)

c: \(\left(x+3y\right)\left(x^2-3xy+9y^2\right)=x^3+27y^3\)

d: \(\left(4x+3y\right)\left(16x^2-12xy+9y^2\right)=64x^3+27y^3\)

DUTREND123456789
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 11 2023 lúc 21:05

a: ĐKXĐ: \(\left\{{}\begin{matrix}x< >\dfrac{3}{2}y\\x< >-\dfrac{y}{3}\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\dfrac{4}{2x-3y}+\dfrac{5}{3x+y}=-2\\\dfrac{-5}{2x-3y}+\dfrac{3}{3x+y}=21\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{20}{2x-3y}+\dfrac{25}{3x+y}=-10\\-\dfrac{20}{2x-3y}+\dfrac{12}{3x+y}=84\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{37}{3x+y}=74\\-\dfrac{5}{2x-3y}+\dfrac{3}{3x+y}=21\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3x+y=\dfrac{1}{2}\\-\dfrac{5}{2x-3y}+3:\dfrac{1}{2}=21\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+y=\dfrac{1}{2}\\\dfrac{-5}{2x-3y}=15\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3x+y=\dfrac{1}{2}\\2x-3y=-\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9x+3y=\dfrac{3}{2}\\2x-3y=-\dfrac{1}{3}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}11x=\dfrac{7}{6}\\2x-3y=-\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7}{66}\\3y=2x+\dfrac{1}{3}=\dfrac{7}{33}+\dfrac{1}{3}=\dfrac{6}{11}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{7}{66}\\y=\dfrac{2}{11}\end{matrix}\right.\)(nhận)

b: ĐKXĐ: \(\left\{{}\begin{matrix}x< >y-2\\x< >-y+1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\dfrac{7}{x-y+2}-\dfrac{5}{x+y-1}=\dfrac{9}{2}\\\dfrac{3}{x-y+2}+\dfrac{2}{x+y-1}=4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{14}{x-y+2}-\dfrac{10}{x+y-1}=9\\\dfrac{15}{x-y+2}+\dfrac{10}{x+y-1}=20\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{29}{x-y+2}=29\\\dfrac{3}{x-y+2}+\dfrac{2}{x+y-1}=4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x-y+2=1\\3+\dfrac{2}{x+y-1}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y=-1\\\dfrac{2}{x+y-1}=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x-y=-1\\x+y-1=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y=-1\\x+y=3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x=2\\x+y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)(nhận)

c:

ĐKXĐ: \(\left\{{}\begin{matrix}y< >2x\\y< >-x\end{matrix}\right.\)

 \(\left\{{}\begin{matrix}\dfrac{3}{2x-y}-\dfrac{6}{x+y}=-1\\\dfrac{1}{2x-y}-\dfrac{1}{x+y}=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{3}{2x-y}-\dfrac{6}{x+y}=-1\\\dfrac{3}{2x-y}-\dfrac{3}{x+y}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{3}{x+y}=-1\\\dfrac{1}{2x-y}-\dfrac{1}{x+y}=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x+y=3\\2x-y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=6\\2x-y=3\end{matrix}\right.\)

=>x=2 và y=2x-3=4-3=1(nhận)

d:ĐKXĐ: \(\left\{{}\begin{matrix}x< >-y+1\\x< >\dfrac{1}{2}y-\dfrac{3}{2}\end{matrix}\right.\)

 \(\left\{{}\begin{matrix}\dfrac{4}{x+y-1}-\dfrac{5}{2x-y+3}=\dfrac{5}{2}\\\dfrac{3}{x+y-1}+\dfrac{1}{2x-y+3}=\dfrac{7}{5}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{4}{x+y-1}-\dfrac{5}{2x-y+3}=\dfrac{5}{2}\\\dfrac{15}{x+y-1}+\dfrac{5}{2x-y+3}=7\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{19}{x+y-1}=\dfrac{19}{2}\\\dfrac{15}{x+y-1}+\dfrac{5}{2x-y+3}=7\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x+y-1=2\\\dfrac{15}{2}+\dfrac{5}{2x-y+3}=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=3\\\dfrac{5}{2x-y+3}=7-\dfrac{15}{2}=-\dfrac{1}{2}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x+y=3\\2x-y+3=-10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=3\\2x-y=-13\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3x=-10\\x+y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{10}{3}\\y=3-x=3+\dfrac{10}{3}=\dfrac{19}{3}\end{matrix}\right.\left(nhận\right)\)

e:

ĐKXĐ: \(x\ne\pm2y\)

 \(\left\{{}\begin{matrix}\dfrac{6}{x-2y}+\dfrac{2}{x+2y}=3\\\dfrac{3}{x-2y}+\dfrac{4}{x+2y}=-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{6}{x-2y}+\dfrac{2}{x+2y}=3\\\dfrac{6}{x-2y}+\dfrac{8}{x+2y}=-2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-\dfrac{6}{x+2y}=5\\\dfrac{3}{x-2y}+\dfrac{4}{x+2y}=-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x+2y=-\dfrac{6}{5}\\\dfrac{3}{x-2y}+4:\dfrac{-6}{5}=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+2y=-\dfrac{6}{5}\\\dfrac{3}{x-2y}=-1+4\cdot\dfrac{5}{6}=-1+\dfrac{10}{3}=\dfrac{7}{3}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x+2y=-\dfrac{6}{5}\\x-2y=\dfrac{9}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=\dfrac{3}{35}\\x-2y=\dfrac{9}{7}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{3}{70}\\2y=x-\dfrac{9}{7}=-\dfrac{87}{70}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{70}\\y=-\dfrac{87}{140}\end{matrix}\right.\left(nhận\right)\)

XiangLin Linh
Xem chi tiết
Nguyễn Ngọc Huy Toàn
4 tháng 3 2022 lúc 21:23

\(=\left[\dfrac{\left(3x+y\right)\left(x+3y\right)+\left(3x-y\right)\left(x-3y\right)}{x\left(x-3y\right)\left(x+3y\right)}\right].\dfrac{\left(x-3y\right)\left(x+3y\right)}{x^2+y^2}\)

\(=\dfrac{\left(3x+y\right)\left(x+3y\right)+\left(3x-y\right)\left(x-3y\right)}{x.\left(x^2+y^2\right)}\)

\(=\dfrac{3x^2+3xy+xy+3y^2+3x^2-3xy-xy+3y^2}{x\left(x^2+y^2\right)}\)

\(=\dfrac{6x^2+6y^2}{x\left(x^2+y^2\right)}=\dfrac{6\left(x^2+y^2\right)}{x\left(x^2+y^2\right)}=\dfrac{6}{x}\)

YangSu
4 tháng 3 2022 lúc 21:34

như ảnh trong hìnhundefined

 

Cíu iem
Xem chi tiết
Nguyễn Hoàng Minh
12 tháng 10 2021 lúc 7:46

\(a,=\dfrac{2y^4}{3x\left(2x-3y\right)}\\ b,=-\dfrac{2y\left(3x-1\right)^2}{3x^2}\\ c,=\dfrac{5\left(4x^2-9\right)}{\left(2x+3\right)^2}=\dfrac{5\left(2x-3\right)\left(2x+3\right)}{\left(2x+3\right)^2}=\dfrac{5\left(2x-3\right)}{2x+3}\\ d,=\dfrac{5x\left(x-2y\right)}{-2\left(x-2y\right)^3}=-\dfrac{5x}{2\left(x-2y\right)^2}\)

Trai Vô Đối
Xem chi tiết
Kuro Kazuya
13 tháng 7 2017 lúc 14:09

Áp dụng bất đẳng thức Cauchy

\(\Rightarrow\Sigma\dfrac{1}{2x+3y+3z}\le\Sigma\dfrac{1}{16}\left(\dfrac{1}{x+y}+\dfrac{1}{x+z}+\dfrac{1}{y+z}+\dfrac{1}{y+z}\right)\)

\(\Rightarrow P\le\dfrac{4}{16}\Sigma\left(\dfrac{1}{x+y}\right)=\dfrac{2017}{4}\)

Dấu " = " xảy ra khi \(x=y=z=\dfrac{3}{4034}\)