Cho hàm số y=f(x) có đạo hàm là f ' ( x ) = ( x - 1 ) 2 ( x + 2 ) ( 3 - x ) . Khi đó số điểm cực trị hàm số là
A. 0
B. 1
C. 2
D. 3
Cho hàm số y=f(x) có đạo hàm là f ' ( x ) = x ( x + 1 ) 2 ( x - 1 ) . Hàm số y=f(x) có bao nhiêu điểm cực trị?
Cho hàm số y=f(x) có đạo hàm f ' ( x ) = x 2 ( x 2 - 1 ) . Điểm cực tiểu của hàm số y=f(x) là:
A. x = 0.
B. x = -1.
C. y = 0.
D. x = 1
Cho hàm số y = f (x) có đạo hàm f ' ( x ) = x 2 ( x - 1 ) ( x 2 - 4 ) Số điểm cực trị của hàm số y = f(x) là:
A. 4
B. 1
C. 2
D. 3
Cho hàm số y=f(x) biết hàm số f(x)có đạo hàm f'(x) và hàm số y=f'(x) có đồ thị như hình vẽ. Đặt g(x0=f(x+1) Kết luận nào sau đây là đúng?
A. Hàm số g(x) đồng biến trên khoảng (3;4)
B. Hàm số g(x) đồng biến trên khoảng (0;1)
C. Hàm số g(x) nghịch biến trên khoảng (4;6)
D. Hàm số g(x) nghịch biến trên khoảng ( 2 ; + ∞ )
Cho hàm số y = f ( x ) có đạo hàm f ' ( x ) = x 2 ( x - 1 ) ( x + 1 ) 3 với mọi x ∈ ℝ . Số điểm cực trị của hàm số y = f ( x ) là
A. 6
B. 4
C. 2
D. 3
Cho hàm số liên tục trên khoảng (a;b) và x 0 ∈ ( a ; b ) . Có bao nhiêu mệnh đề đúng trong các mệnh đề sau?
(1) Hàm số đạt cực trị tại điểm x 0 khi và chỉ khi f ' ( x 0 ) = 0 .
(2) Nếu hàm số y = f ( x ) có đạo hàm và có đạo hàm cấp hai tại điểm x 0 thỏa mãn điều kiện f ' ( x 0 ) = f ' ' ( x 0 ) = 0 thì điểm x 0 không phải là điểm cực trị của hàm số y = f ( x ) .
(3) Nếu f'(x) đổi dấu khi x qua điểm x 0 thì điểm x 0 là điểm cực tiểu của hàm số y = f ( x ) .
(4) Nếu hàm số y = f ( x ) có đạo hàm và có đạo hàm cấp hai tại điểm x 0 thỏa mãn điều kiện f ' ( x 0 ) = 0 , f ' ' ( x 0 ) > 0 thì điểm x 0 là điểm cực tiểu của hàm số y = f ( x ) .
A. 1
B. 2
C. 0
D. 3
Đáp án A
Phương pháp:
Dựa vào khái niệm cực trị và các kiến thức liên quan.
Cách giải:
(1) chỉ là điều kiện cần mà không là điều kiện đủ.
VD hàm số y = x3 có y' = 3x2 = 0 ⇔ x = 0. Tuy nhiên x = 0 không là điểm cực trị của hàm số.
(2) sai, khi f''(x0) = 0, ta không có kết luận về điểm x0 có là cực trị của hàm số hay không.
(3) hiển nhiên sai.
Vậy (1), (2), (3): sai; (4): đúng
Cho hàm số f(x) có đạo hàm f ' ( x ) = x ( x + 1 ) ( x + 2 ) 3 , ∀ x ∈ R . Số điểm cực trị của hàm số y = f ( x 2 - 2 x ) là
A. 3.
B. 2.
C. 5.
D. 4.
Cho hàm số f(x) có đạo hàm là f''(x) = x - 2 4 ( x - 1 ) ( x + 3 ) x 2 + 3 . Tìm số điểm cực trị của hàm số y = f(x)
A. 6.
B. 3.
C. 1.
D. 2.
Đáp án là D
Hàm số f(x) có đạo hàm là
f''(x) = 0
Bảng biến thiên
Từ BBT ta thấy hàm số có 2 điểm cực trị.
Cho hàm số y=f(x) có đạo hàm là f′(x)=(x−1)(x−2)2(x−3). Số điểm cực trị của hàm số là
A. 3
B. 1
C. 2
D. 0
Cho hàm số y= f(x) có đạo hàm là f'(x)=(x-1) ( x - 2 ) 2 (x-3). Số điểm cực trị của hàm số là
A. 0
B. 2
C. 1
D. 3