cho các số nguyên a, b, c,d sao cho: a+b = c+d và a.b +1= c.d. c/m c=d
Cho các số nguyên a, b, c, d sao cho a + b = c + d và a.b + 1 = c.d
Chứng minh c = d.
a+b=c+d => a=c+d-b
thay vào ab+1=cd
=> (c+d-b)*b+1=cd
<=> cb+db-cd+1-b^2=0
<=> b(c-b)-d(c-b)+1=0
<=> (b-d)(c-b)=-1
a,b,c,d,nguyên nên (b-d) và (c-b) nguyên
mà (b-d)(c-b)=-1 nên có 2 TH:
TH1: b-d=-1 và c-b=1
<=> d=b+1 và c=b+1
=> c=d
TH2: b-d=1 và c-b=-1
<=> d=b-1 và c=b-1
=> c=d
Vậy từ 2 TH ta có c=d.
Đặt (a;c)=q thì a=qa1;c=qc1 (Vs (a1;c1=1)
Suy ra ab=cd ⇔ba1=dc1
Dẫn đến d⋮a1 đặt d=a1d1 thay vào đc:
b=d1c1
Vậy an+bn+cn+dn=q2an1+dn1cn1+qncn1+an1dn1=(cn1+an1)(dn1+qn)
là hợp số (QED)
=> a=c+d-b
thay vào ab+1=cd
=> (c+d-b)*b+1=cd
<=> cb+db-cd+1-b^2=0
<=> b(c-b)-d(c-b)+1=0
<=> (b-d)(c-b)=-1
a,b,c,d,nguyên nên (b-d) và (c-b) nguyên
mà (b-d)(c-b)=-1 nên có 2 TH:
TH1: b-d=-1 và c-b=1
<=> d=b+1 và c=b+1
=> c=d
TH2: b-d=1 và c-b=-1
<=> d=b-1 và c=b-1
=> c=d
Vậy từ 2 TH ta có c=d.
cho các số nguyên a;b;c;d thỏa mãn điều kiện: a+b=c+d và a.b+1=c.d. CMR: c=d
a+b = c+d => a = c+d-b
Thay vào ab+1 = cd
=> (c+d-b).b+1 = cd
<=> cb+db-cd+1-b2 = 0
<=> b(c-b)-d(c-b)+1 = 0
<=> (b-d)(c-b) = -1
a,b,c,d,nguyên nên b-d và c-b nguyên
Mà (b-d)(c-b) = -1 nên ta xét 2 trường hợp:
TH1: b-d = -1 và c-b = 1
<=> d = b+1 và c = b+1
=> c = d
TH2: b-d = 1 và c-b = -1
<=> d = b-1 và c = b-1
=> c = d
Vậy c = d.
Cho các số nguyên a,b,c,d thỏa mãn các điều kiện sau: a+b=c+d và a.b+1=c.d CMR: c=d
Ta có a + b = c + d => a = c + d - b
thay vào ab + 1 = cd
=> ( c + d - b ) . b + 1 = cd
<=> cb + db - cd + 1 - b2 = 0
<=> b ( c - b ) - d ( c - b ) + 1 = 0
<=> ( b - d ) ( c - b ) + 1 = 0
<=> ( b - d ) ( c - b ) = -1
Vì a, b, c, d là số nguyên nên ( b - d ) và ( c - b ) nguyên mà ( b - d ) ( c - b ) = -1 nên có 2 trường hợp :
1 : b - d = -1 và c - b = 1
<=> d = b + 1 và c = b + 1
=> c = d
2 : b - d = 1 và c - b = -1
<=> d = b - 1 và c = b - 1
=> c = d
Vậy từ 2 trường hợp trên ta có c = d
Ta có a + b = c + d => a = c + d - b
thay vào ab + 1 = cd
=> ( c + d - b ) . b + 1 = cd
<=> cb + db - cd + 1 - b2 = 0
<=> b ( c - b ) - d ( c - b ) + 1 = 0
<=> ( b - d ) ( c - b ) + 1 = 0
<=> ( b - d ) ( c - b ) = -1
Vì a, b, c, d là số nguyên nên ( b - d ) và ( c - b ) nguyên mà ( b - d ) ( c - b ) = -1 nên có 2 trường hợp :
1 : b - d = -1 và c - b = 1
<=> d = b + 1 và c = b + 1
=> c = d
2 : b - d = 1 và c - b = -1
<=> d = b - 1 và c = b - 1
=> c = d
Vậy từ 2 trường hợp trên ta có c = d
Co các số nguyên a,b,c,d
a+b=c+d và a.b + 1=c.d
chứng tỏ c=d
Cho a,b,c,d thuộc Z sao cho a.b=c.d+1 và a+b = c+d .Chứng Minh a=b
Cho a , b , c , d là số nguyên ; biết tích a.b là số liền sau của tích c.d và a+b=c+d
( dấu . là dấu nhân)
đề bài này hình như mik chép thiếu...xin lỗi nha
cho a/b=c/d khac 1 va c khac 0
CMR:
a)((a.b)/(c.d))^2=(a.b)/(c-d)
b)((a.b/c.d))^3=((a^3-b^3)/(a^3-d^3))
1/ cho a,b,c,d khác 0 sao cho a2+b2=c2+d2. CMR: a+b+c+d là hợp số
2/ cho a,b,c,d khác 0 sao cho a.b=c.d. CMR: a+b+c+d là hợp số
1.Cho các phân số 35/396 và 28/297.Tìm phân số nhỏ nhất mà khi chia cho mỗi phân số đó ta đc 1 số nguyên?
2.Chờ a,b,c,d là số nguyên. biết tích a.b = c.d +1 và a+b=c+d.Chứng minh a=b
3.Tìm các số a,b sao cho số 2007ab là bình phương của 1 số tự nhiên
1) phan so phai tim la 140/99 dung do khong sai dau