Cho số phức z thỏa mãn 1 + z 2 là số thực. Tập hợp điểm M biểu diễn số phức z là
A. Đường tròn
B. Parabol
C. Một đường thẳng
D. Hai đường thẳng
Cho số phức z thỏa mãn 1 + z 2 là số thực. Tập hợp điểm M biểu diễn số phức z là
A. Đường tròn.
B. Parabol.
C. Một đường thẳng.
D. Hai đường thẳng.
Cho số phức z thỏa mãn 1 + z 2 là số thực. Tập hợp điểm M biểu diễn số phức z là
A. Đường tròn.
B. Parabol.
C. Một đường thẳng.
D. Hai đường thẳng.
Cho số phức z thỏa mãn 1 + z 2 là số thực. Tập hợp các điểm M biểu diễn số phức z là
A. Hai đường thẳng
B. Parabol
C. Đường thẳng
D. Đường tròn
Chọn đáp án A
Giả sử số phức z = x + y i , x , y ∈ R có điểm biểu diễn là M(x;y)
Ta có 1 + z 2 = x + 1 2 - y 2 + 2 y x + 1 i là số thực nên
Vậy tập hợp các điểm M(x,y) biểu diễn số phức z = x +yi là hai đường thẳng y = 0; x = -1.
Cho số phức z thỏa mãn |z + 2| + |z – 2| = 8. Trong mặt phẳng phức tập hợp những điểm M biểu diễn cho số phức z là?
C. ( x + 2) 2 + ( y - 2) 2 = 64.
D. ( x + 2) 2 + ( y - 2) 2 = 8.
Chọn A.
Gọi M(x; y) , F1= ( -2; 0) và F2( 2; 0).
Ta có |z + 2| + |z – 2| = 8
Hay MF1+ MF2 = 8.
Do đó điểm M(x; y) nằm trên elip (E ) có 2a = 8 nên a = 4
ta có F1F2 = 2c nên 4 = 2c hay c = 2
Ta có b2 = a2 - c2 = 16 - 4 = 12
Vậy tập hợp các điểm M là elip
Cho số phức z thỏa mãn z - 1 = z - 2 + 3 i Tập hợp các điểm biểu diễn số phức z là
A. Đường tròn tâm I(1;2), bán kính R = 1.
B. Đường thẳng có phương trình 2x-6y+12=0
C. Đường thẳng có phương trình x-3y-6=0
D. Đường thẳng có phương trình x-5y-6=0
Cho số phức z thỏa mãn z - 1 = z + 3 i . Tập hợp các điểm biểu diễn số phức z là
A. đường tròn tâm I 1 ; 3 , bán kính R = 3
B. đường thẳng có phương trình - 3 y + x + 4 = 0
C. đường tròn tâm I 1 ; 0 , bán kính R = 3
D. đường thẳng có phương trình 3 y + x + 4 = 0
Cho số phức z thỏa mãn z - 1 = z + 3 i . Tập hợp các điểm biểu diễn số phức z là
Cho số phức z thỏa mãn là số thuần ảo. Tập hợp các điểm M biểu diễn số phức z là:
A. Đường tròn tâm O, bán kính R = 1.
B. Hình tròn tâm O, bán kính R = 1 (kể cả biên).
C. Hình tròn tâm O, bán kính R = 1 (không kể biên).
D. Đường tròn tâm O, bán kính R = 1 bỏ đi một điểm (0;1).
Chọn D.
Gọi M(a ; b) là điểm biểu diễn số phức z = a + bi
Ta có:
Để là số thuần ảo thì
Tập hợp các điểm M là đường tròn tâm O, bán kính R = 1 bỏ đi một điểm (0; 1).
Xét các số phức z thỏa mãn z - 1 + i ( z + z ¯ ) i + 1 là số thực. Tập hợp các điểm biểu diễn của số phức w = z 2 là parabol có đỉnh