Phép tịnh tiến theo v → = 1 ; − 2 biến điểm M(-3;1) thành điểm M'. Tìm tọa độ M'.
A. M ' 4 ; − 3
B. M'(-2;-1)
C. M'(-4;3)
D. M'(2;1)
Cho vectơ v → đường thẳng d vuông góc với giá của v → . Gọi d’ là ảnh của d qua phép tịnh tiến theo vectơ v → 2 . Chứng minh rằng phép tịnh tiến theo vectơ v → là kết quả của việc thực hiện liên tiếp phép đối xứng qua các đường thẳng d và d’.
Hướng dẫn. Dùng định nghĩa phép tịnh tiến và phép đối xứng trục.
Lấy điểm A bất kì.
Gọi B = Đd (A) ; C = Đd’(B).
Gọi H, K là giao điểm của AB với d và d’ như hình vẽ.
Ta có:
Mà d’ là ảnh của d qua phép tịnh tiến theo vectơ
⇒ C là ảnh của A qua phép tịnh tiến theo vec tơ v→
Trong mặt phẳng tọa độ Oxy cho vectơ v → = - 1 ; 2 , A 3 ; 5 , B - 1 ; 1 và đường thẳng d có phương trình x – 2 y + 3 = 0 .
a. Tìm tọa độ của các điểm A' , B' theo thứ tự là ảnh của A, B qua phép tịnh tiến theo vecto v →
b. Tìm tọa độ của điểm C sao cho A là ảnh của C qua phép tịnh tiến theo vectơ v →
c. Tìm phương trình của đường thẳng d' là ảnh của d qua phép tịnh tiến theo v .
c) Đường thẳng d có vecto pháp tuyến là n→(1;-2) nên 1 vecto chỉ phương của d là(2; 1)
=> Vecto v→ không cùng phương với vecto chỉ phương của đường thẳng d
=> Qua phép tịnh tiến v→ biến đường thẳng d thành đường thẳng d’ song song với d.
Nên đường thẳng d’ có dạng : x- 2y + m= 0
Lại có B(-1; 1) d nên B’(-2;3) d’
Thay tọa độ điểm B’ vào phương trình d’ ta được:
-2 -2.3 +m =0 ⇔ m= 8
Vậy phương trình đường thẳng d’ là:x- 2y + 8 = 0
Trong mặt phẳng tọa độ Oxy, biết điểm M’(-3;0) là ảnh của điểm M(1;-2) qua phép tịnh tiến theo vectơ u → và M”(2;3) là ảnh của điểm M’ qua phép tịnh tiến theo vectơ v → . Tìm tọa độ vectơ u → + v → .
A. (1;5)
B. (-4;2)
C. (5;3)
D. (0;1)
Trong mặt phẳng tọa độ Oxy, biết điểm M ' − 3 ; 0 là ảnh của điểm M 1 ; − 2 qua phép tịnh tiến theo vectơ u → và M ' ' 2 ; 3 là ảnh của điểm M ' ' 2 ; 3 qua phép tịnh tiến theo vectơ v → . Tìm tọa độ vectơ u → + v → .
A. 1 ; 5 .
B. − 4 ; 2 .
C. 5 ; 3 .
D. 0 ; 1 .
Đáp án A
Ta có u → = M M ' → = − 4 ; 2 . v → = M ' M ' ' → = 5 ; 3
Vậy u → + v → = 1 ; 5
a) cho d: 2x-3y+12=0. Tìm ảnh của d qua phép tịnh tiến theo v = (4; -3) b) cho d : 2x+y-4=0 và A (3;1) ;B (-1;8) . Tìm ảnh d' của d qua phép tịnh tiến theo AB->
a, Gọi M(3 ; 6) ∈ d. Gọi \(T_{\overrightarrow{v}}\left(M\right)=M'\)
⇒ \(\overrightarrow{MM'}=\overrightarrow{v}=\left(4;-3\right)\)
⇒ M' (7 ; 3)
\(T_{\overrightarrow{v}}\left(d\right)=d'\) ⇒ d' // d và d' đi qua M' (7 ; 3)
⇒ d' : 2x - 3y - 5 = 0
b, làm tương tự
Cho v → 1 ; 1 và A 0 ; − 1 . Ánh của A qua phép tịnh tiến theo véctơ v → có toạ độ là:
A. 1 ; 0
B. 0 ; 1
C. 1 ; 2
D. 2 ; 1
Đáp án A
Áp dụng biểu thức x ' = x + a y ' = y + b
Trong mặt phẳng Oxy, cho v → = ( 2 ; 0 ) và điểm M(1; 1).
a) Tìm tọa độ của điểm M’ là ảnh của điểm M qua phép dời hình có được bằng cách thực hiện liên tiếp phép đối xứng qua trục Oy và phép tịnh tiến theo vectơ v →
b) Tìm tọa độ của điểm M" là ảnh của điểm M qua phép dời hình có được bằng cách thực hiện liên tiếp phép tịnh tiến theo vectơ v → và phép đối xứng qua trục Oy.
a) M(-1;1) đối xứng qua trục Oy ta được N(-1;1).
Gọi M'(x;y) là ảnh của N(-1;1) qua phép tịnh tiến theo vectơ v → = ( 2 ; 0 )
b) Gọi P(x;y) là ảnh của M(1;1) qua phép tịnh tiến theo v → = ( 2 ; 0 )
P(3;1) đối xứng qua trục Oy ta được M"(-3;1)
Trong mặt phẳng Oxy cho ường thẳng d: x + 2y –2014 = 0
a) Viết phương trình đường thẳng d’ là ảnh của d qua phép Tịnh tiến theo vectơ v=(2;7).
b/ Tìm phương trình đường thẳng d’ sao cho đt (d) là ảnh của d’qua phép Tịnh tiến theo vectơ v=(2;7)
7. Tìm ảnh d’ của đường thẳng d: 2x – y – 1 = 0 qua phép tịnh tiến theo vector v=(2;-1)
Do d' là ảnh của d qua phép tịnh tiến \(\Rightarrow\) d' cùng phương d
Phương trình d' có dạng: \(2x-y+c=0\)
Lấy \(A\left(0;-1\right)\) là 1 điểm thuộc d
\(T_{\overrightarrow{v}}\left(A\right)=A'\Rightarrow\left\{{}\begin{matrix}x'=0+2=2\\y'=-1+\left(-1\right)=-2\end{matrix}\right.\)
\(\Rightarrow A'\left(2;-2\right)\)
Thế vào pt d':
\(2.2-\left(-2\right)+c=0\Rightarrow c=-6\)
Vậy pt d' là: \(2x-y-6=0\)