Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hải
Xem chi tiết
Tran Le Khanh Linh
28 tháng 2 2020 lúc 19:31

\(A=3+3^2+3^3+...+3^{100}\)

\(\Leftrightarrow3A=3^2+3^3+3^4+3^5+....+3^{101}\)

\(\Leftrightarrow3A-A=\left(3^2+3^3+3^4+3^5+...+3^{101}\right)-\left(3+3^2+3^3+3^4+...+3^{100}\right)\)

\(\Leftrightarrow2A=3^{101}-3\)

\(\Leftrightarrow A=\frac{3^{101}-3}{2}< 3^{100}-1\)

\(\Leftrightarrow A< B\)

Khách vãng lai đã xóa
Nguyễn Trọng Anh Văn
28 tháng 2 2020 lúc 19:31

a. tính A = 3+3^2+3^3+3^4+.....+3^100

3A=3^2+3^3+3^4+3^5+....+3^100

3A-A=(3^2+3^3+3^4+....+3^101)-(3+3^2+3^3+3^4+.....+3^100)=3^101-3=3^100

mà B=3^100-1 => A<B

Khách vãng lai đã xóa
Tran Le Khanh Linh
28 tháng 2 2020 lúc 19:34

\(A=1+4+4^2+...+4^{99}\)

\(\Leftrightarrow4A=4+4^2+4^3+...+4^{100}\)

\(\Leftrightarrow3A=4^{100}-1\)

\(\Leftrightarrow A=\frac{4^{100}-1}{3}< \frac{4^{100}}{3}\)

hay A<B (đpcm)

Khách vãng lai đã xóa
bincorin
Xem chi tiết
Akai Haruma
25 tháng 10 lúc 22:54

Lời giải:

$A=1+4+4^2+4^3+...+4^{99}$

$4A=4+4^2+4^3+4^4+....+4^{100}$

$\Rightarrow 4A-A=4^{100}-1$

$\Rightarrow 3A=4^{100}-1=B-1< B$
$\Rightarrow A< \frac{B}{3}$

Đông  Trần
Xem chi tiết
dong tran
Xem chi tiết
Itami Mika
20 tháng 2 2016 lúc 19:56

A=1+4+42+43+.......+499                                                                                                                                                                                     4A=4+42+43+44+.....+4100                                                                                                                                                                                 4A-A=4+42+43+44+.....+4100 -1-4-42-43-.......-499                                                                                                                                                                                            3A=4100-1 => A=(4100-1)/3                                                                                                                                                                                 Vì 4100>4100-1 nên (4100-1)/3 < 4100/3 HAY A<B/3(ĐPCM)                                                                                                                             

Vy Thùy Linh
Xem chi tiết
Nguyễn Diệu Hương
Xem chi tiết
Ngô Chi Lan
15 tháng 7 2020 lúc 21:47

Bài làm:

Ta có: \(A=1+4+4^2+4^3+...+4^{99}\)

\(\Rightarrow4A=4+4^2+4^3+4^4+...+4^{100}\)

\(\Rightarrow4A-A=\left(4+4^2+...+4^{100}\right)-\left(1+4+...+4^{99}\right)\)

\(\Leftrightarrow3A=4^{100}-1\)

\(\Rightarrow A=\frac{4^{100}-1}{3}=\frac{4^{100}}{3}-\frac{1}{3}< \frac{4^{100}}{3}=\frac{B}{3}\)

\(\Leftrightarrow A< \frac{B}{3}\)

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
15 tháng 7 2020 lúc 22:02

A = 1 + 4 + 42 + 43 + ... + 499

4A = 4( 1 + 4 + 42 + 43 + ... + 499 )

     = 4 + 42 + 43 + 44 + ... + 4100

4A - A = 3A

           = ( 4 + 42 + 43 + 44 + ... + 4100 ) - ( 1 + 4 + 42 + 43 + ... + 499 )

           =  4 + 42 + 43 + 44 + ... + 4100 - 1 - 4 - 42 - 43 - ... - 499

           = 4100 - 1 

3A = 4100 - 1 => A = \(\frac{4^{100}-1}{3}\)

\(\frac{B}{3}=\frac{4^{100}}{3}\)

\(4^{100}-1< 4^{100}\Rightarrow\frac{4^{100}-1}{3}< \frac{4^{100}}{3}\)

\(\Rightarrow A< \frac{B}{3}\left(đpcm\right)\)

Khách vãng lai đã xóa
Ashes PK249
16 tháng 7 2020 lúc 7:00

\(4A=4+4^2+...+4^{100}\) 

\(\Rightarrow4A-A=3A=4^{100}-1\)

\(\Rightarrow A=\frac{4^{100}-1}{3}< \frac{4^{100}}{3}\Rightarrow A< \frac{B}{3}\)

Khách vãng lai đã xóa
Vũ Đức Vinh
Xem chi tiết
Nguyễn Minh Quang
22 tháng 11 2021 lúc 15:50

ta có 

\(4A=4+4^2+4^3+..+4^{99}+4^{100}=\left(1+4+4^2+..+4^{99}\right)+4^{100}-1\)

hay 

\(4A=A+4^{100}-1\Leftrightarrow A=\frac{4^{100}-1}{3}< \frac{4^{100}}{3}=\frac{B}{3}\)

vậy ta có điều phải chứng minh

Khách vãng lai đã xóa
Nguyễn Trung Kiên
Xem chi tiết
Vânn Nhii
Xem chi tiết
Kiều Vũ Linh
3 tháng 11 2023 lúc 6:56

A = 1/4 + 1/4² + 1/4³ + ... + 1/4⁹⁹

⇒ 4A = 1 + 1/4 + 1/4² + ... + 1/4⁹⁸

⇒ 3A = 4A - A

= (1 + 1/4 + 1/4² + ... + 1/4⁹⁸) - (1/4 + 1/4² + 1/4³ + ... + 1/4⁹⁹)

= 1 - 1/4⁹⁹

⇒ A = (1 - 1/4⁹⁹)/3

Do 1 - 1/4⁹⁹ < 1

⇒ (1 - 1/4⁹⁹)/3 < 1/3

Vậy A < 1/3