Cho A=1+4+4^2+4^3+4^4+...+4^99.Chứng Minh Rằng A<B/3
Chứng Minh Rằng
a. cho biểu thức A= 3 + 3^2+ 3^3+ 3^4+...+ 3^100 và B= 3^100-1.Chứng Minh rằng : A<B
b. Cho A= 1+4+4^2+...+4^99, B= 4^100. Chứng Minh Rằng : A<B/3
\(A=3+3^2+3^3+...+3^{100}\)
\(\Leftrightarrow3A=3^2+3^3+3^4+3^5+....+3^{101}\)
\(\Leftrightarrow3A-A=\left(3^2+3^3+3^4+3^5+...+3^{101}\right)-\left(3+3^2+3^3+3^4+...+3^{100}\right)\)
\(\Leftrightarrow2A=3^{101}-3\)
\(\Leftrightarrow A=\frac{3^{101}-3}{2}< 3^{100}-1\)
\(\Leftrightarrow A< B\)
a. tính A = 3+3^2+3^3+3^4+.....+3^100
3A=3^2+3^3+3^4+3^5+....+3^100
3A-A=(3^2+3^3+3^4+....+3^101)-(3+3^2+3^3+3^4+.....+3^100)=3^101-3=3^100
mà B=3^100-1 => A<B
\(A=1+4+4^2+...+4^{99}\)
\(\Leftrightarrow4A=4+4^2+4^3+...+4^{100}\)
\(\Leftrightarrow3A=4^{100}-1\)
\(\Leftrightarrow A=\frac{4^{100}-1}{3}< \frac{4^{100}}{3}\)
hay A<B (đpcm)
Cho A = 1 + 4 + 4^2 + 4^3 + .... + 4^99 , B = 4^100 . Chứng minh rằng A<B/3
Lời giải:
$A=1+4+4^2+4^3+...+4^{99}$
$4A=4+4^2+4^3+4^4+....+4^{100}$
$\Rightarrow 4A-A=4^{100}-1$
$\Rightarrow 3A=4^{100}-1=B-1< B$
$\Rightarrow A< \frac{B}{3}$
Cho A= 1+4+42+...+499,B=4100.Chứng minh rằng A<B/3
Cho A=1+4+42+43+. . . .+ 499,B=4100 . Chứng minh rằng A<B/3
A=1+4+42+43+.......+499 4A=4+42+43+44+.....+4100 4A-A=4+42+43+44+.....+4100 -1-4-42-43-.......-499 3A=4100-1 => A=(4100-1)/3 Vì 4100>4100-1 nên (4100-1)/3 < 4100/3 HAY A<B/3(ĐPCM)
Cho A=1/2^2+1/3^2+1/4^2+.......+1/99^2+1/100^2.Chứng minh rằng A<3/4
5 . Cho A = 1 + 4 + 4^2 + 4^3 + .............. +4^99 và B = 4^100
CHỨNG MINH RẰNG : A bé hơn B phần 3
Bài làm:
Ta có: \(A=1+4+4^2+4^3+...+4^{99}\)
\(\Rightarrow4A=4+4^2+4^3+4^4+...+4^{100}\)
\(\Rightarrow4A-A=\left(4+4^2+...+4^{100}\right)-\left(1+4+...+4^{99}\right)\)
\(\Leftrightarrow3A=4^{100}-1\)
\(\Rightarrow A=\frac{4^{100}-1}{3}=\frac{4^{100}}{3}-\frac{1}{3}< \frac{4^{100}}{3}=\frac{B}{3}\)
\(\Leftrightarrow A< \frac{B}{3}\)
A = 1 + 4 + 42 + 43 + ... + 499
4A = 4( 1 + 4 + 42 + 43 + ... + 499 )
= 4 + 42 + 43 + 44 + ... + 4100
4A - A = 3A
= ( 4 + 42 + 43 + 44 + ... + 4100 ) - ( 1 + 4 + 42 + 43 + ... + 499 )
= 4 + 42 + 43 + 44 + ... + 4100 - 1 - 4 - 42 - 43 - ... - 499
= 4100 - 1
3A = 4100 - 1 => A = \(\frac{4^{100}-1}{3}\)
\(\frac{B}{3}=\frac{4^{100}}{3}\)
\(4^{100}-1< 4^{100}\Rightarrow\frac{4^{100}-1}{3}< \frac{4^{100}}{3}\)
\(\Rightarrow A< \frac{B}{3}\left(đpcm\right)\)
\(4A=4+4^2+...+4^{100}\)
\(\Rightarrow4A-A=3A=4^{100}-1\)
\(\Rightarrow A=\frac{4^{100}-1}{3}< \frac{4^{100}}{3}\Rightarrow A< \frac{B}{3}\)
giúp tớ với
cho A=1+4+4 mũ 2 + 4 mũ 3 +.....+4 mũ 99
B=4 mũ 100
chứng minh rằng A<B/3
ta có
\(4A=4+4^2+4^3+..+4^{99}+4^{100}=\left(1+4+4^2+..+4^{99}\right)+4^{100}-1\)
hay
\(4A=A+4^{100}-1\Leftrightarrow A=\frac{4^{100}-1}{3}< \frac{4^{100}}{3}=\frac{B}{3}\)
vậy ta có điều phải chứng minh
Cho A=1+4+4^2+4^3+...+4^99 và B=4^100
Chứng minh rằng: A < B/3
Cho A= 1/4+1/4^2+1/4^3+...+1/4^99. Chứng tỏ rằng A<1/3
A = 1/4 + 1/4² + 1/4³ + ... + 1/4⁹⁹
⇒ 4A = 1 + 1/4 + 1/4² + ... + 1/4⁹⁸
⇒ 3A = 4A - A
= (1 + 1/4 + 1/4² + ... + 1/4⁹⁸) - (1/4 + 1/4² + 1/4³ + ... + 1/4⁹⁹)
= 1 - 1/4⁹⁹
⇒ A = (1 - 1/4⁹⁹)/3
Do 1 - 1/4⁹⁹ < 1
⇒ (1 - 1/4⁹⁹)/3 < 1/3
Vậy A < 1/3