Cho tanα - 3cotα = 6 và π < α < 3π/2. Tính
Cho tanα - 3cotα = 6 và π < α < 3π/2. Tính
sinα + cosα
Cho cos α=-2/5 và π<α<3π/2. tính tanα, sinα ,cotα
\(sin\alpha=-\sqrt{1-cos^2\alpha}=-\dfrac{\sqrt{21}}{5}\)
\(tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\dfrac{-\dfrac{\sqrt{21}}{5}}{-\dfrac{2}{5}}=\dfrac{\sqrt{21}}{2}\)
\(cot\alpha=\dfrac{1}{tan\alpha}=\dfrac{2}{\sqrt{21}}\)
cho sin α bằng 1/3 và π/2 <α<π . Tính giá trị của cosα,tanα,và cotα
Vì \(\dfrac{\pi}{2}< \alpha< \pi\) \(\Rightarrow\) cos \(\alpha\) < 0
\(\Rightarrow\) cos \(\alpha\) = \(-\sqrt{1-sin^2\alpha}\) = \(-\dfrac{2\sqrt{2}}{3}\)
\(\Rightarrow\) tan \(\alpha\) = \(\dfrac{sin\alpha}{cos\alpha}=\dfrac{-\sqrt{2}}{4}\)
\(\Rightarrow\) cot \(\alpha\) = \(\dfrac{1}{tan\alpha}\) = \(-2\sqrt{2}\)
Chúc bn học tốt!
a) Cho cos α = 2 3 . Tính giá trị của biểu thức
A = tan α + 3 c o t α tan α + c o t α
b) Cho sin α = 3 5 v à 90 ° < α < 180 °
Tính giá trị của biểu thức:
C = c o t α - 2 tan α tan α + 3 c o t α
Cho sin α = - 1 2 , π < α < 3 π 2 Tính A = 4 sin 2 α - 2 cos α + 3 c o t α
Cho sin α = - 1 2 , π < α < 3 π 2 .Tính A = 4 s i n 2 α - 2 c o s α + 3 c o t α :
A. - 3 2
B. 1+ 4 3
C. - 3 + 2 2
D. 4 3 3
Cho tanα = 2cotα và 3π/2 < α < 2π. Giá trị của biểu thức sinα + cosα là
Vì tanα = 2cotα và 3π/2 < α < 2π nên 3π/2 < α < 7π/4.
Do đó sinα < (- 2 )/2 và cosα < 2 /2.
Vì vậy sinα + cosα < 0.
Suy ra các phương án A, C, D bị loại.
Đáp án: B
Cho góc α thỏa mãn cos α = - 5 3 và π < α < 3 π 2 .Tính tanα.
Cho góc α thỏa mãn cos α = - 12 13 và π 2 < α < π .Tính tanα.