Trong hệ trục tọa độ Oxyz cho mặt phẳng (P) x-4y+3z-2=0. Một vecto pháp tuyến của (P)
A. (0;-4;3)
B. (1;4;3)
C. (-1;4;-3)
Trong hệ trục tọa độ Oxyz, cho phương trình mặt phẳng (P): 2x+4y-3z+1=0. Vecto pháp tuyến của (P) là:
A. (2;4;3)
B. (2;4;-3)
C. (2;-4;-3)
D. (-3;4;2)
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P : x − 4 y + 3 z − 2 = 0. Một vecto pháp tuyến của mặt phẳng (P) là:
A. n 1 → = 0 ; − 4 ; 3 .
B. n 2 → = 1 ; 4 ; 3 .
C. n 3 → = − 1 ; 4 ; − 3 .
D. n 4 → = − 4 ; 3 ; − 2 .
Đáp án C.
Phương pháp:
Mặt phẳng P : A x + B y + C z + D = 0 có 1 VTPT là n → = A ; B ; C .
Cách giải:
P : x − 4 y + 3 z − 2 = 0 có một vecto pháp tuyến là n 3 → = − 1 ; 4 ; − 3 .
Trong không gian với hệ trục tọa độ Oxyz, một vecto pháp tuyến của mặt phẳng α : x-2y+3z+1=0
A. (3;-2;1)
B. (1;-2;3)
C. (1;2;-3)
D. (1;-2;-3)
Trong không gian với hệ trục tọa độ Oxyz, một vecto pháp tuyến của mặt phẳng (P): 2x-3z+4=0. Véc tơ nào dưới đây vuông góc với mặt phẳng (P)?
A. (3;0;2)
B. (2;-3;0)
C. (2;-3;4)
D. (2;0;-3)
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x-4y+3z-2=0. Một vectơ pháp tuyến của mặt phẳng (P) là
A. n → 1 = 0 ; - 4 ; 3
B. n → 2 = 1 ; 4 ; 3
C. n → 3 = - 1 ; 4 ; - 3
D. n → 4 = - 4 ; 3 ; - 2
Trong hệ trục tọa độ Oxyz, cho phương trình mặt phẳng (P): x-2y+3=0. Vecto pháp tuyến của (P) là
A. (1;-2;3)
B. (1;-2;0)
C. (1;-2)
D. (1;3)
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 2x+2y-3z+1=0. Vecto nào dưới đây là 1 vecto pháp tuyến mặt phẳng (P)
A. (2;2;1)
B. (2;-3;1)
C. (2;2;-3)
D. (2;-2;-3)
Trong hệ trục tọa độ Oxyz, cho mặt phẳng (P) có phương trình 3x-z+1=0. Vecto pháp tuyến của mặt phẳng (P)
A. (3;0;-1)
B. (3;-1;1)
C. (3;-1;0)
D. (-3;1;1)
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 4y-6z+7=0. Vec tơ nào là vecto pháp tuyến của (P)
A. (0;6;4)
B. (4;-6;7)
C. (4;0;-6)
D. (0;2;-3)