tìm STN n sao cho
(n+8)chia hết cho(n+3)
(7n+8)chia hết cho n
Tìm STN n sao cho:
a) (4n - 7) chia hết cho (n - 1)
b) (5n - 8) chia hết cho (4 - n)
c) (10 - 2n) chia hết cho (n - 2)
d) (n^2 + 3n + 6) chia hết cho (n + 3)
a) \(4\left(n-1\right)-3⋮\left(n-1\right)\)
\(\Rightarrow\left(n-1\right)\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
Do \(n\in N\Rightarrow n\in\left\{0;2;4\right\}\)
b) \(-5\left(4-n\right)+12⋮\left(4-n\right)\)
\(\Rightarrow\left(4-n\right)\inƯ\left(12\right)=\left\{-12;-6;-4;-3;-2;-1;1;2;3;4;6;12\right\}\)
Do \(n\in N\Rightarrow n\in\left\{16;10;8;7;6;5;3;2;1;0\right\}\)
c) \(-2\left(n-2\right)+6⋮\left(n-2\right)\)
\(\Rightarrow\left(n-2\right)\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
Do \(n\in N\Rightarrow n\in\left\{0;1;3;4;5;8\right\}\)
d) \(n\left(n+3\right)+6⋮\left(n+3\right)\)
\(\Rightarrow\left(n+3\right)\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
Do \(n\in N\Rightarrow n\in\left\{0;3\right\}\)
Tìm n biết
n + 3chia hết cho n
7n + 8 chia hết cho n
35 - 12nchia hết cho n n bé hơn 3
n + 8 chia hết cho n + 3
16 - 3n chia hết cho n + 4
Tìm n sao cho 7n+46 chia hết cho n+8
Tìm n thuộc Z sao cho:
a) (n2 + 7n - 8) chia hết cho n + 3
b) (n2 + 5) chia hết cho n - 2
a) ( n\(^2\) + 7n - 8) chia hết cho n+3
Có : \(\frac{n^2+7n-8}{n+3}=n+4+\frac{-20}{n+3}\) là 1 số nguyên \(\Rightarrow-\frac{20}{n+3}\in Z\Rightarrow-20⋮n+3\Rightarrow n+3\inƯ\left(-20\right)=\) \(\left\{-20;-10;-5;-4;-2;-1;1;2;4;5;10;20\right\}\)
\(\Rightarrow n\in\left\{-23;-13;-8;-7;-5;-4;-2;0;1;2;7;17\right\}\)
b) (n\(^2\) + 5) chia hết cho n-2
\(\Rightarrow\frac{n^2+5}{n+2}=\frac{n.n+5}{n+2}=\frac{n\left(n+2\right)-2n+5}{n+2}=n-\frac{2n-5}{n+2}=n-\frac{2\left(n+2\right)-9}{n+2}\)
\(n-2+\frac{9}{n+2}\) \(;n-2\in Z\Rightarrow\frac{9}{n+2}\in Z\) \(\Rightarrow9⋮n+2\Rightarrow n+2\inƯ\left(9\right)=\left\{-1-3;-9;1;3;9\right\}\)
\(\Rightarrow n\in\left\{-3;-5;-11;-1;1;7\right\}\)
Mình cũng làm như cách của Ngân
Ủng hộ 1 TK cái !
c) 22/5 + 51/9 + 11/4 + 3/5 + 1/3 + 1/4
= 22/5 +3/5 +51/9 + 1/3 +11/4+1/4
= (22/5 +3/5) +(51/9 + 3/9) +(11/4+1/4)
= 25/5 +54/9 +12/4
= 5 +6 +3
= 14
d) (1/6 + 1/10 + 1/15) : (1/6 + 1/10 - 1/15)
= (5/30 + 3/30 +2/30 ) :(5/30 +3/30 -2/30)
= 10/30 : 6/30
= 1/3 : 1/5
= 5/3
tìm số tự nhiên n để :
a) 7n + 8 chia hết cho n
b) 35 - 12n chia hết cho n ( n < 3 )
c) n + 8 chia hết cho n + 3
giúp nha, giải đầy đủ
a) \(\frac{7n+8}{n}=\frac{7n}{n}+\frac{8}{n}=7+\frac{8}{n}\)
\(\Rightarrow n\in\text{Ư}\left(8\right)=\left\{1;2;4;8\right\}\)
b) \(\frac{35-12n}{n}=\frac{35}{n}-\frac{12n}{n}=\frac{35}{n}-12\)
\(\Rightarrow n\in\text{Ư}\left(35\right)=\left\{1;3;5;7;35\right\}\)
Loại \(n\in\left\{1;3\right\}\) vì n > 3.
Vậy: \(n\in\left\{5;7;35\right\}\)
c) \(\frac{n+8}{n+3}=\frac{n+3+5}{n+3}=\frac{n+3}{n+3}+\frac{5}{n+3}=1+\frac{5}{n+3}\)
\(\Rightarrow n+3\in\text{Ư}\left(5\right)=\left\{1;5\right\}\)
\(\Rightarrow n+3=1\Rightarrow n=1-3=-2\) (loại vì -2 < 0)
\(\Rightarrow n+3=5\Rightarrow n=2\)
Vậy: n = 2
giải đầy đủ ba câu nhưng không yêu cầu chi tiết
a. n phải chia hết cho n rồi cãi sao đuọc
7 n càng chia hết cho n
vậy 8 phải chia hết cho n
n=(1.2.4.8)
b. ồ n<3 thì còn mỗi 1.2 n=1 hiển nhiên rồi, n=2 ko cần tử biết loại
vậy n=1 (người ra câu nàylãng xẹt)
c. (n+8)/(n+3) ko có dấu chia hết tạm dùng (...) là dấu chia hết
(n+3) (...) (n+3) hiển nhiên
(n+8) (...) (n+3)
=>[n+8-(n+3)] (...)(n+3)
5(...)(n+3)
vậy n+3=(1,5)
n=(2)
Tìm STN n sao cho
a ) 8 chia hết cho n + 1
b ) n + 4 chia hết cho n + 1
c ) n2 + 4 chia hét cho n + 2
d ) 13n chia hết cho n - 1
a,Vì 8 chia hết cho n+1
=> n+1 thuộc ước của 8
=> n+1 thuộc {1;2;4;8}
=>n thuộc {0;1;3;7}
Vậy n thuộc {0;1;3;7}
b, Ta có n+4 chia hết cho n+1
=> [(n+1)+3] chia hết cho n+1
=> 3 chia hết cho n+1
=> n+1 thuộc ước của 3
=> n+1 thuộc {1;3}
=> n thuộc {0;2}
Vậy n thuộc {0;2}
c,(n+1) chia hết cho (n+1)
=> (n+1)(n+1) chia hết cho (n+1)
hay n^2 + 2n +1 chia hết cho (n+1)
=> (n^2 + 2n + 1)-(n^2 + 4) chia hết cho (n-1)
=> 2n + 1 -4 chia hết cho n-1
=> 2n-3 chia hết cho n-1
n-1 chia hết cho n-1 nên 2n-2 chia hết cho n-1
=> (2n-2)-(2n-3) chia hết cho n-1
=> 1 chia hết cho n-1
=> n-1 = 1
=> n=0
Vậy n=0
d,Do n và n-1 là hai số tự nhiên liên tiếp
=>(n;n-1)=1
=> 13 chia hết cho n-1
=> n-1 thuộc ước của 13
=>n-1 thuộc {1;13}
=>n thuộc {0;12}
Vậy n thuộc {0;12}
Xong k hộ mình nha
Tìm điều kiện của n để:
( n + 5 ) chia hết cho n
( 7n + 8) chia hết cho n
35 - 12n chia hết cho n ( vs n < 3)
n + 5 ) chia hết cho n ( n khác 0)
( 7n + 8) chia hết cho n ( n khác 0)
35 - 12n chia hết cho n ( n<3 và n khác 0)
a)\(\left(n+5\right)⋮n\)
\(\Rightarrow n+5=1;-1;5;-5\)
\(\Rightarrow n=-4;-6;0;-10\)
n+5 chia hết cho n
=>5 chia hết cho n
=>n thuộc Ư(5)={1;5;-1;-5}
Vậy......
Có 35-12n chia hết cho n
Với n<3
=>n thuộc {1;2}
Với n=1 (thỏa mãn 35-12n chia hết cho n)
Với n=2 (loại vì 35 lẻ ; 12n chẵn mà lẻ - chẵn = lẻ ; lẻ ko chia hết cho 2 nên n khác 2)
Tìm các stn n sao cho:
a/n+11 chia hết cho n-1 b/7n chia hết cho n-3
c/n^2 +2n +6 chia hết cho n+4 d/n^2 +n+1 chia hết cho n +1
a, n+11 chia hết cho n -1
suy ra (n+11)-(n-1) chia hết cho n-1
suy ra 12 chia hết cho n-1
n-1 E {1;2;4;6;12}
Câu b tương tự
c, n2+2n+6
n.n+2.n+6
=n.(n+2)+6 chia hết cho n+4
Ta có n.(n+4) chia hết cho n+4
suy ra 2n - 6 chia hết cho n+4
n-10 chia hết cho n+4
-14 chia hết cho n+4
suy ra n=10;3
d, suy ra n2 chia hết cho n+1
Ta có: n.(n+1)=n2+n chia hết cho n+1
suy ra n chia hết cho n+1
-1 chia hết cho n+1
suy ra n=0
(n+3)chia hết cho 3
(7n+8)chia hết cho n
(32-12n)chia hết cho n(nEN)
n+3 chia hết cho 3
Vì 3 chia hết cho 3 nên n chia hết cho 3
=> n thuộc B(3)
=> n = 3k (k thuộc N)
Vậy n có dạng 3k
7n+8 chia hết cho n
Vì 7n chia hết cho n nên 8 chia hết cho n
=> n thuộc Ư(8)={1;2;4;8}
câu tiếp tt