Cho hình chóp S.ABCD có ABCD là hình thoi cạnh a, A B C ^ = 60 0 , S A ⊥ ( A B C D ) , S A = 3 a 2 . Gọi O là tâm của hình thoi ABCD. Khoảng cách từ điểm O đến (SBC) bằng:
A. 3 a 4
B. 3 a 8
C. 5 a 8
D. 5 a 4
Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O có cạnh bằng a, góc BAC ^ = 60 ° , SO ⊥ ( ABCD ) và SO = 3a/4. Tính thể tích khối chóp S.ABCD.
A. a 3 3 8
B. a 3 3 4
C. a 3 4
D. 3 a 3 3 8
Cho hình chóp S.ABCD có ABCD là hình thoi cạnh a và S A B ^ = S A D ^ = B A D ^ = 60 ° cạnh bên SA=a. Thể tích khối chóp tính theo a là:
A. a 3 2 2
B. a 3 2 3
C. a 3 2 6
D. a 3 2 12
Cho hình chóp S.ABCD có ABCD là hình thoi cạnh a,
A B C ⏜ = 60 ° , S A ⊥ A B C D , S A = 3 a 2 . Gọi O là tâm hình thoi ABCD. Khoảng cách từ điểm O đến (SBC) bằng
A. 3 a 4
B. 3 a 8 .
C. 5 a 8
D. 5 a 4 .
Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O có cạnh bằng a, góc BAD = 60 ° với AC cắt BD tại O, SO ⊥ ( ABCD ) và SO = 3a/4. Tính thể tích khối chóp S.ABCD.
Lời giải:
$\widehat{BAD}=60^0\Rightarrow \widehat{BAO}=30^0$
$\frac{BO}{AB}=\sin \widehat{BAO}=\sin 30^0=\frac{1}{2}$
$\Rightarrow BO=\frac{AB}{2}=\frac{a}{2}$
$BD=2BO=a$
$\frac{AO}{AB}=\cos \widehat{BAO}=\cos 30^0=\frac{\sqrt{3}}{2}$
$\Rightarrow AO=\frac{\sqrt{3}a}{2}$
$\Rightarrow AC=\sqrt{3}a$
$S_{ABCD}=\frac{BD.AC}{2}=\frac{\sqrt{3}a^2}{2}$
$V_{S.ABCD}=\frac{1}{3}.SO.S_{ABCD}=\frac{1}{3}.\frac{3a}{4}.\frac{\sqrt{3}a^2}{2}=\frac{\sqrt{3}a^3}{8}$
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, D ^ = 60° và SA vuông góc với (ABCD). Biết thể tích của khối chóp S.ABCD bằng a 3 2 . Tính khoảng cách k từ A đến mặt phẳng (SBC).
A. k = 3 a 5
B. k = a 3 5
C. k = 2 a 5
C. k = 2 a 5
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh 2a, B A C ⏜ = 60 ∘ , S O ⊥ A B C D và S O = 3 a 4 . Tính thế tích V của khối chóp S.ABCD
A. V = a 3 2
B. V = a 3 2 2
C. V = a 3 3 2
D. V = a 3
Đáp án C
Ta có: S A B C = 1 2 A B . A C sin A = a 2 3 ⇒ S A B C D = 2 a 2 3
Do đó V = 1 3 S O . S A B C D = a 2 3 2 .
Cho hình chóp S.ABCD có ABCD là hình thoi cạnh a, A B C ^ = 60 ° , SA vuông góc với (ABCD) S A = 3 a 2 . Gọi O là tâm của hình thoi ABCD. Khoảng cách từ điểm O đến (SBC) bằng:
A. 3 a 4
B. 3 a 8
C. 5 a 8
D. 5 a 4
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, ABC = 60 ° cạnh bên SA = a 2 và SA vuông góc với ABCD. Tính góc giữa SB và (SAC).
A. 90 °
B. 30 °
C. 45 °
D. 60 °
Chọn B.
Gọi O = AC ∩ BD. Vì ABCD là hình thoi nên BO ⊥ AC(1). Lại do:
Từ (1) và (2) ta có:BO ⊥ (SAC)
Ta có:
Vì ABCD là hình thoi có ABC = 60 ° nên tam giác ABC đều cạnh a
Trong tam giác vuông SBO ta có:
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, góc A B C ^ = 60 ° . Biết SA = SB = SC = a. Góc giữa hai mặt phẳng (SBD) và (ABCD) bằng:
A. 60 °
B. 30 °
C. 45 °
D. 90 °
Chọn D.
- Gọi G là trọng tâm tam giác ABC.
- Hình chóp S.ABC là hình chóp đều nên SG ⊥ (ABC).
→ Góc giữa hai mặt phẳng (SBD) và (ABCD) bằng 90 °
Cho khối chóp S.ABCD có đáy ABCD là hình thoi cạnh a góc ABC = 60 ° , chiều cao bằng 3a thể tích của khối chóp bằng.
A. a 3 2 3
B. 3 a 2 3
C. 2 a 3 12
D. 3 a 3 2