cho tam giác ABC vuông tại A, đường phân giác BD. Biết AD=3cm, DC=5cm. Tính độ dài các đoạn AB,BC
Cho \(\Delta ABC\) vuông tại A, đường phân giác BD. Biết AD = 3cm, DC = 5cm. Tính độ dài các đoạn thẳng AB , BC.
Cho tam giác ABC vuông tại A, có AB = 3cm, AC = 5cm , đường phân giác AD. Đường vuông góc với DC cắt AC ở E .
a) Chứng minh rằng tam giác ABC ~ tam giác DEC
b) Tính độ dài các đoạn thẳng BC , BD
c) Tính độ dài AD Tính diện tích tam giác ABC và diện tích tứ giác ABD
a xet ABC và DEC
chung C
bAc=eDc=90 độ
=> ABC và DEC đồng dạng (gg) (1)
b BC^2=3^2+5^2=34
=> BC= căn (34)
BD/DC=3/5
BC/DC=8/5
<=> căn 34/DC=8/5
=> DC=căn(34) *5/8
=> BD=căn(34) -DC=3(căn(34))/8
c Sabc=3*5/2=15/2
sabde= 15/2-15/2*17/32=225/64
Bài 6 : Cho tam giác ABC vuông tại A, có AB = 3cm, AC = 5cm , đường phân giác AD. Đường vuông góc với DC cắt AC ở E .
a) Chứng minh rằng tam giác ABC ~ tam giác DEC
b) Tính độ dài các đoạn thẳng BC , BD
c) Tính độ dài AD Tính diện tích tam giác ABC và diện tích tứ giác ABDE
Cho tam giác ABC vuông tại A, có AB=3cm, AC=5cm, đường phân giác AD. Đường vuông góc với DC cắt AC ở E.
a) CM: tam giác ABC và DEC đồng dạng
b) Tính độ dài các đoạn thẳng BC, BD
c) Tính độ dài AD
d) Tính d.tích tam giác ABC và d.tích tứ giác ABDE
a: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có
góc C chung
=>ΔCDE đồng dạng với ΔCAB
b: BC=căn 3^2+5^2=căn 34(cm)
AD là phân giác
=>BD/AB=CD/AC
=>BD/3=CD/5=căn 34/8
=>BD=3/8*căn34(cm)
c: \(AD=\dfrac{2\cdot5\cdot3}{5+3}\cdot cos45=\dfrac{15}{8}\cdot\sqrt{2}\left(cm\right)\)
Ta có
\(\frac{AD}{DC}=\frac{AB}{BC}=\frac{3}{5}\) (Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn tỉ lệ với hai cạnh kề của hai đoạn ấy)
\(\Rightarrow AB=\frac{3.BC}{5}\)
Ta có
\(BC^2=AB^2+AC^2\) (pitago)
\(\Rightarrow BC^2=\left(\frac{3.BC}{5}\right)^2+\left(AD+DC\right)^2\)
\(\Rightarrow BC^2=\frac{9.BC^2}{25}+64\Rightarrow16.BC^2=1600\Rightarrow BC^2=100\Rightarrow BC=10cm\)
\(AB=\frac{3.BC}{5}=\frac{3.10}{5}=6cm\)
Cho tam giác ABC vuông ở A , đường phân giác trong BD, đường phân giác ngoài BE ( D, E \(\varepsilon\)AC ) . Biết AD=3cm, DC=5cm. Tính độ dài AB, BC, AE
nhầm,
Ta có AC=AD+DC+3+5=8(cm)
Áp dụng định lí Py ta go vào tam giác vuông ta có:
AB=√BC2−AC2=√BC2−82=√BC2−64AB=BC2−AC2=BC2−82=BC2−64
Trong tam giác vuông ABC có BD là phân giác nên:
ABBC=ADDCABBC=ADDC
⇔√BC2−AC2BC=ADDC⇔BC2−AC2BC=ADDC
⇔√BC2−64BC=35⇔BC2−64BC=35
⇔5√BC2−64=3BC⇔5BC2−64=3BC
⇔(5√BC2−64)2=(3BC)2⇔(5BC2−64)2=(3BC)2
⇔25(BC2−64)=9BC2⇔25(BC2−64)=9BC2
⇔25BC2−1600=9BC2⇔25BC2−1600=9BC2
⇔16BC2=1600⇔16BC2=1600
⇔BC2=100⇔BC2=100
⇔BC=10(cm)⇔BC=10(cm)
Vậy AB=√BC2−AC2=√102−82=6(cm)AB=BC2−AC2=102−82=6(cm)
AB^2 = BH x BC (1)
AC^2 = HC x BC (2)
Lấy (1) : (2) => AB^2/AC^2 = BH/HC <=> 9/49 = BH/CH
Vậy tỉ lệ BH:HC cần tìm là 9:49
Cho tam giác ABC vuông ở A, đường phân giác trong BD, đường phân giác ngoài BE ( D,E \(\varepsilon\)AC). Biết AD=3cm, DC=5cm. Tính độ dài AB, BC, AE
Cho tam giác ABC vuông tại A, có AB=3cm, AC=5cm, đường phân giác AD. Đường vuông góc với DC cắt AC ở E.
a) Chứng minh rằng tam giác ABC đồng dạng với tam giác DEC.
b)Tính độ dài BC,BD.
c) Tính độ dài AD. Tính diện tích tam giác ABC và diện tích tứ giác ABDE
Cho tam giác ABC vuông tại A có AB=3cm, BC=5cm, phân giác AD. Qua D vẽ đường vuông góc với DC cắt AC ở E.
a)Tính độ dài đoạn AD
b) Tính diện tích của tam giác ABC tứ giác ABDE