Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 8 2018 lúc 6:27

Crackinh
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 3 2022 lúc 21:06

\(F\left(x\right)=\int\left(e^x.ln\left(ax\right)+\dfrac{e^x}{x}\right)dx=\int e^xln\left(ax\right)dx+\int\dfrac{e^x}{x}dx=\int e^xlnxdx+\int\dfrac{e^x}{x}dx+\int e^x.lna.dx\)

Xét \(I=\int e^xlnxdx\)

Đặt \(\left\{{}\begin{matrix}u=lnx\\dv=e^xdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\dfrac{dx}{x}\\v=e^x\end{matrix}\right.\)

\(\Rightarrow I=lnx.e^x-\int\dfrac{e^x}{x}dx\)

\(\Rightarrow F\left(x\right)=e^x.lnx+e^x.lna+C\)

\(F\left(\dfrac{1}{a}\right)=e^{\dfrac{1}{a}}ln\left(\dfrac{1}{a}\right)+e^{\dfrac{1}{a}}.lna+C=0\Rightarrow C=0\)

\(F\left(2020\right)=e^{2020}ln\left(2020\right)+e^{2020}.lna=e^{2020}\)

\(\Rightarrow ln\left(2020a\right)=1\Rightarrow a=\dfrac{e}{2020}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 5 2018 lúc 15:59

Chọn C.

Phương pháp: Kiểm tra tính đúng sai của từng mệnh đề.

Cách giải:

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 10 2018 lúc 15:43

Đáp án C

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
11 tháng 8 2017 lúc 12:47

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 5 2019 lúc 3:15

Nghị Hoàng
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 9 2018 lúc 4:05

I am➻Minh
Xem chi tiết
Rinu
25 tháng 8 2019 lúc 9:30

Bài làm

a+b=x+y=>a2+2ab+b2=x2+2xy+y2=>2ab=2xy=>a2-2ab+b2

=x2-2xy+y2=>(a+b)2=(x-y)2=>\(\orbr{\begin{cases}a-b=x-y\\a-b=y-x\end{cases}}\)

\(+,a-b=x-y\Rightarrow a+b-\left(a-b\right)=x+y-\left(x-y\right)\Rightarrow2a=2x\Rightarrow a=x\Rightarrow b=y\)

\(\Rightarrow a^{2017}+b^{2017}=x^{2017}+y^{2017}\)

\(+,a-b=y-x\Rightarrow\left(a+b\right)+\left(a-b\right)=x+y+\left(y-x\right)\Rightarrow2a=2y\Rightarrow a=y\Rightarrow b=x\)

\(=x\Rightarrow a^{2017}+b^{2017}=x^{2017}+y^{2017}\Rightarrow\left(đpcm\right)\)

girl yêu
26 tháng 8 2019 lúc 11:02

Ê, giẻ rách, mày copy vừa thôi

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 5 2018 lúc 6:16

Đáp án D

Phương pháp:

+) Xét hàm số h(x) = f(x) - 2017 = ax4 + bx2 + c - 2017

+) Tìm số điểm cực trị của hàm số h(x) bằng cách giải phương trình h'(x) = 0

+) Xác định dấu của h(0); h(1); h(-1) và vẽ đồ thị hàm số y = h(x), từ đó vẽ đồ thị hàm số y = |h(x)| và kết luận.

Cách giải:

Xét hàm số h(x) = f(x) - 2017 = ax4 + bx2 + c - 2017,

 

với a > 0, c > 2017, a + b + c < 2017 nên b < 0

Ta có: h(0) = c - 2017 > 0, h(-1) = h(1) = a + b + c - 2017 < 0

⇒ h(0).(h-1) < 0, h(0).h⁡(1) < 0

⇒ ∃ x1, x2: x1 ∈ (-1;0), x2 ∈ (0;1) mà h(x1) = h(x2) = 0

Do đó, đồ thị hàm số y = h(x) và y = |h(x)| dạng như hình vẽ bên.

Vậy, số cực trị của hàm số y = |f(x) - 2017| là 7