Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Nam
Xem chi tiết
Nguyễn Khánh Bảo Thi
Xem chi tiết
Sherry
Xem chi tiết
Nguyễn Tiến Dũng
11 tháng 3 2018 lúc 21:43

Áp dụng BĐT \(x^2+y^2\ge2xy\) ( với a,b,c>0) ta có:

\(\frac{a^3}{b+c}+\frac{a\left(b+c\right)}{4}=\frac{a^4}{a\left(b+c\right)}+\frac{a\left(b+c\right)}{4}\ge a^2\)           (1)

CMTT ta được

\(\frac{b^3}{a+c}+\frac{b\left(a+c\right)}{4}\ge b^2\)                             (2)

\(\frac{c^3}{a+b}+\frac{c\left(a+b\right)}{4}\ge c^2\)                             (3)

Cộng lần lượt từng vế của 3 BĐT (1);(2);(3) ta được:

\(\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}+\frac{a\left(b+c\right)}{4}+\frac{b\left(c+a\right)}{4}+\frac{c\left(a+b\right)}{4}\ge a^2+b^2+c^2\)

\(\Leftrightarrow\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}+\frac{2\left(ab+bc+ac\right)}{4}\ge a^2+b^2+c^2\)

\(\Leftrightarrow\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}\ge a^2+b^2+c^2-\frac{ab+bc+ca}{2}\)                 (*)

Áp dụng BĐT \(a^2+b^2+c^2\ge ab+bc+ca\)với 3 số a,b,c>0 ta được:

\(\frac{a^2+b^2+c^2}{2}\ge\frac{ab+bc+ca}{2}\)

Thay vào pt (*) ta được:

\(\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}\ge a^2+b^2+c^2-\frac{a^2+b^2+c^2}{2}\)

\(\Leftrightarrow\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}\ge\frac{a^2+b^2+c^2}{2}\left(đpcm\right)\)

k tớ nha !!!

Transformers
Xem chi tiết
Transformers
7 tháng 8 2016 lúc 17:12

help meeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Nguyễn Quỳnh Chi
7 tháng 8 2016 lúc 17:26

1) a3+b3+c3-3abc = (a+b)3-3ab(a+b)+c3-3abc

                           = (a+b+c)(a2+2ab+b2-ab-ac+c2) -3ab(a+b+c)

                           = (a+b+c)( a2+b2+c2-ab-bc-ca)

Nguyễn Quỳnh Chi
7 tháng 8 2016 lúc 17:35

Vì a+b+c=0

=> a+b=-c

=> (a+b)3= (-c)3

=> a3+b3+3ab(a+b) = (-c)3

=> a3+b3+c3= 3abc

Lê Văn Pháp
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 5 2018 lúc 13:42

Chọn B

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
12 tháng 4 2018 lúc 12:41

Đáp án C

Ta có:  

khong có
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 4 2021 lúc 23:16

Ta chứng minh BĐT phụ sau:

\(\dfrac{a^3}{a^2+b^2}\ge\dfrac{2a-b}{2}\)

Thật vậy, BĐT tương đương:

\(2a^3-\left(2a-b\right)\left(a^2+b^2\right)\ge0\)

\(\Leftrightarrow b\left(a-b\right)^2\ge0\) (luôn đúng với a;b dương)

Tương tự: \(\dfrac{b^3}{b^3+c^3}\ge\dfrac{2b-c}{2}\) ; \(\dfrac{c^3}{c^3+a^3}\ge\dfrac{2c-a}{2}\)

Cộng vế với vế:

\(VT\ge\dfrac{a+b+c}{2}=3\) (đpcm)

Nguyễn Quốc Khánh
Xem chi tiết
Nguyễn Linh Chi
11 tháng 12 2019 lúc 11:53

Ta có: \(a^3+b^3+3\left(a^2+b^2\right)+4\left(a+b\right)+4=0\)

<=> \(\left(a+b\right)^3-3ab\left(a+b\right)+3\left(a+b\right)^2-6ab+4\left(a+b\right)+4=0\)

<=> \(\left[\left(a+b\right)^3+2\left(a+b\right)^2\right]-3ab\left(a+b+2\right)+\left(a+b\right)^2+4\left(a+b\right)+4=0\)

<=> \(\left(a+b\right)^2\left(a+b+2\right)-3ab\left(a+b+2\right)+\left(a+b+2\right)^2=0\)

<=> \(\left(a+b+2\right)\left(\left(a+b\right)^2-3ab+a+b+2\right)=0\)

<=> \(\left(a+b+2\right)\left(a^2+b^2-ab+a+b+2\right)=0\)(1)

Có: \(a^2+b^2-ab+a+b+2=\frac{1}{2}\left[\left(a-b\right)^2+\left(a+1\right)^2+\left(b+1\right)^2\right]+1>0\)

=> (1) <=>  a + b + 2 = 0 <=> a + b = -2

Thế vào tìm M .

Cố gắng học tốt giúp đỡ mọi người nhiều hơn nhé! :))))

Khách vãng lai đã xóa
Mint chocolate
Xem chi tiết
vu duc anh
4 tháng 7 2019 lúc 14:31

cho a 1

L.I.K.E

để a 

làm hộ bn này bài này nào