Cho hình trụ có hai đường tròn đáy lần lượt là (O); (O’). Biết thể tích khối nón có đỉnh là O và đáy là hình tròn (O’) là a 3 , tính thể tích khối trụ đã cho ?
A. 2 a 3
B. 4 a 3
C. 6 a 3
D. 3 a 3
Một hộp thực phẩm hình trụ có đáy là hình tròn có chiều cao là 6cm. Hãy tính thể tích hộp thực phẩm đó. biết số đo diện tích đáy của hộp bằng 3 lần số đo chu vi đáy hộp ?
Lời giải:
Diện tích đáy = 3 x chu vi
$\Rightarrow 3,14\times r\times r=3\times 3,14\times 2\times r$
$\Rightarrow r=3\times 2=6$
Diện tích đáy: $3,14\times 6\times 6=113,04$ (cm2)
Thể tích hộp thực phẩm: $6\times 113,04=678,24$ (cm3)
Cho hình tru ̣có hai đáy là hai đường tròn (O;R) và (O; R')chiều cao là R 3 và hình nón có đỉnh là O¢ và đáy là đường tròn (O;R) Tính tỉ số giữa diện tích xung quang của hình trụ và diện tích xung quanh của hình nón
A. 2
B. 3
C. 3
D. 2
Đáp án B
Diện tích xung quang của hình trụ là: S 1 = 2 π R . R 3 = 2 π R 2 3
Độ dài đường sinh của hình nón là: l = R 2 + R 3 2 = 2 R
Diện tích xung quanh của hình nón là: S 2 = π R l = π R .2 R = 2 π R 2
Tính tỉ số giữa diện tích xung quang của hình trụ và diện tích xung quanh của hình nón
S 1 S 2 = 2 π R 2 3 2 π R 2 = 3
Cho hình tru ̣có hai đáy là hai đường tròn (O;R) và (O;R') chiều cao là R 3 và hình nón có đỉnh là O¢ và đáy là đường tròn (O;R) Tính tỉ số giữa diện tích xung quang của hình trụ và diện tích xung quanh của hình nón
C. 3
D. 2
Cho tam giác ABC nội tiếp đường tròn (O) bk r có đường cao AH.Gọi I và K lần lượt là hình chiếu vuông góc của A trên các tiếp tuyến của đường tròn (O) ở B và C
a.Cm AHBI và AHCK nội tiếp
b.Cm AH²=AI.AK
cho đường tròn (O) đường kính AB, một điểm M di động trên đường tròn. Gọi N là điểm đối xứng với A qua M; P là giao điểm thứ 2 của BN với đường tròn (O); Q,R là giao điểm của đường thẳng BM lần lượt với AP và với tiếp tuyến tai A của đường tròn(O).
a) chứng minh N luôn luôn trên 1 đường tròn cố định tiếp xúc với đường tròn (O). Gọi đó là đường tròn (C)
b) chứng minh RN là tiếp tuyến của đường tròn (C)
c) tứ giác ARNQ là hình gì?
không cần vẽ hình nha mn
làm giúp mình với. ai có làm là mình tick đúng cho
làm ơn!!!
a) Vì \(A,M,B\in\left(O\right)\); AB là đường kính
\(\Rightarrow\widehat{AMB}=90^0\)
\(\Rightarrow AM\perp MB\)
Xét tam giác ANB có: BM vừa là đường cao vừa là đường trung bình
\(\Rightarrow\Delta ANB\)cân tại B
\(\Rightarrow NB=BA\)
\(\Rightarrow N\in\left(C;\frac{BA}{2}\right)\)cố định
b) Vì BM là đường cao của tam giác ABN cân tại B
=> BM là phân giác góc ABN
=> góc ABM= góc NBM
Xét tam giác ARB và tam giác NRB có:
\(\hept{\begin{cases}BRchung\\\widehat{ABM}=\widehat{NBM}\left(cmt\right)\\AB=NB\end{cases}\Rightarrow\Delta ARB=\Delta NRB\left(c-g-c\right)}\)
\(\Rightarrow\widehat{RAB}=\widehat{RNB}=90^0\)
\(\Rightarrow RN\perp BN\)
\(\Rightarrow RN\)là tiếp tuyến của (C)
c) Ta có: A,P,B thuộc (O); AB là đường kính
\(\Rightarrow\widehat{APB}=90^0\)
\(\Rightarrow AP\perp BP\)
\(\Rightarrow RN//AP\)( cùng vuông góc với NB )
Xét tam giác NAB có: \(\hept{\begin{cases}MB\perp AN\\AP\perp BN\end{cases}}\); AP cắt BM tại Q
\(\Rightarrow Q\)là trực tâm tam giác NAB
\(\Rightarrow NQ\perp AB\)
=> NQ // AR( cùng vuông góc với AB)
Xét tứ giác ARNQ có:
\(\hept{\begin{cases}AR//NQ\left(cmt\right)\\RN//AP\left(cmt\right)\end{cases}\Rightarrow ARNQ}\)là hình bình hành
Mà 2 đường chéo RQ và AN vuông góc với nhau
=> ARNQ là hình thoi
Cho một đường tròn tâm O,đường kính AB=12cm dây CD có độ dài = 12cm và vuông góc với AB tại H
a,Tính AH,HB
b,Gọi M,N lần lượt là hình chiếu của H lên AC,BC . Tính S tứ giác CMHN
Cho một đường tròn tâm O,đường kính AB=12cm dây CD có độ dài = 12cm và vuông góc với AB tại H
a,Tính AH,HB
b,Gọi M,N lần lượt là hình chiếu của H lên AC,BC . Tính S tứ giác CMHN
một tấm thảm hình chữ nhật có diện tích la 432dm2 ,trên tấm thảm có một hình thoi có độ dài đáy hai đường chéo lần lượt là 12dm và 8dm .a)diện tích hình thoi là.B)viết tỉ số diện tích của hình chữ nhật và dienj tích hình thoi.
a ) Diện tích hình thoi là :
\(\frac{12\times8}{2}=48\) ( dm2 )
b ) Tỉ số diện tích của hình chữ nhật và hình thoi là :
\(\frac{432}{48}=\frac{9}{1}=9\)
Đáp số : a ) \(48\)dm2
b ) \(\frac{9}{1}\)
Bài 5 Cho nửa đường tròn (O) đường kính AB. Trên tia dối của tia AB lấy một điểm M. Vẽ tiếp tuyến MC với nửa đường tròn. Gọi H là hình chiếu của C trên AB
a, c/m tia CA là tia phân giác của góc MCH
b, Giả sử MA = a, MC = 2a. Tính AB và CH theo a
Bài 6 Cho tam giác ABC ngoại tiếp đường tròn (O). Gọi D,E,F lần lượt là các tiếp điểm của đường tròn trên các cạnh AB,BC,CA. Gọi M,N,P lần lượt là các giao điểm của đường tròn (O) với các tia OA,OB,OC. c/m các điểm M,N,P lần lượt là tâm của đường tròn nội tiếp các tam giác ADF, BDE và CEF