Cho tam giác ABC có góc A=120 độ, đường phân giác AD.CMR: 1/AB+1/AC=1/AD^2
Cho tam giác ABC có góc A = 120 độ , AB = 3 cm , AC= 6 cm . Tính độ dài phân giác AD
Cho tâm giác ABC với đường phân giác AD thỏa mãn : 1/AD = 1/AB +1/AC . tính số đo góc A
1.Cho tam giác ABC có góc A bằng 120 độ, đường phân giác AD. Đường phân giác ngoài tại đỉnh C cắt đường thẳng AB tại K. E là giao điểm của DK và AC. Tính góc BED?
2.Cho tam giác ABC có góc A bằng 120 độ, các đường phân giác AD, BE, CF.
a.Chứng minh DE là phân giác ngoài của tam giác ADB
b. Tính góc EDF
cho tam giác abc có góc a bằng 120 độ, góc b bằng 40 độ, kẻ các đường phân giác trong ad,be.a) chứng minh rằng 1/ab+1/ac=1/ad b) cho ab=m, ac=n ,diện tích tam giác abc là s tính diện tích tam giác abe theo m,n,s
Cho tam giác ABC có góc A = 120 độ, AD là phân giác. CMR: 1/AB + 1/AC = 1/AD
1, cho tam giác abc ,a=90 độ ,đường cao ah = 12 ,bc=25.tình ab, ac, hb,hc
2, cho tam giác abc ,a=90 độ ,ab/ac = 3/2 ,đường cao ah = a .tính hb.hc.ab,ac,
3, cho abc , a=90 độ , ah=120 ,bc=289 . tính ab.ac.bh.hc
4, cho tam giác abc , a=90 độ đường cao ah=120 , ac=136 .tính ab,bc và phân giác ad và góc a
3:
Đặt HB=x; HC=y
Theo đề, ta có: x+y=289 và xy=120^2=14400
=>x,y là các nghiệm của phương trình:
a^2-289a+14400=0
=>a=225 hoặc a=64
=>(x,y)=(225;64) và (x,y)=(64;225)
TH1: BH=225cm; CH=64cm
=>\(AB=\sqrt{225\cdot289}=15\cdot17=255\left(cm\right)\) và \(AC=\sqrt{64\cdot289}=7\cdot17=119\left(cm\right)\)
TH2: BH=64cm; CH=225cm
=>AB=119m; AC=255cm
1. Cho tam giác ABC có góc A= 120 độ, AB=3cm, AC=6cm, AD là phân giác. Tính AD
Qua D kẻ DE // AB ( E \(\in\)AB )
Vì AD là phân giác góc A của \(\Delta ABC\):
\(\Rightarrow\)\(\frac{DC}{DB}=\frac{AC}{AB}\)
\(\Rightarrow\) \(\frac{DC}{DB+DC}=\frac{AC}{AB+AC}\)hay \(\frac{DC}{BC}=\frac{6}{3+6}\)\(\Leftrightarrow\)\(\frac{DC}{BC}=\frac{2}{3}\)(1)
Ta có : AB là phân giác góc A \(\Rightarrow\)\(\widehat{A_1}=\widehat{A_2}=\frac{\widehat{BAC}}{2}=\frac{120}{2}=60^0\)
Mà \(\widehat{A_1}=\widehat{D_1}=60^0\)( so le trong , DE // AB )
\(\Rightarrow\widehat{A_2}=\widehat{D_1}=60^0\Rightarrow\)\(\Delta ADE\)đều
\(\Rightarrow\)AD = DE
Vì DE // AB ( cách dựng )
Xét \(\Delta ABC\)theo hệ quả định lý Ta-lét ta có:\(\frac{DE}{AB}=\frac{DC}{BC}\)(2)
Thế (1) vào (2) ta được :\(\frac{DE}{AB}=\frac{2}{3}\)hay \(\frac{DE}{3}=\frac{2}{3}\)
\(\Rightarrow DE=\frac{2.3}{3}=2\left(cm\right)\)
\(\Rightarrow AD=2\left(cm\right)\)( AD=DE chứng minh trên )
1) Cho tam giác ABC có góc A=120, đường phân giác của goác A cắt BC tại D.Đường phân giác góc ngoài tại C cắt đường thẳng AB ở K. Gọi E là giao điểm của DK và AC.Tính góc BED?
2)Cho tam giác ABC có góc A=120 độ. Các đường phân giác AD và BE.Tính góc BED?
cho tam giác abc có góc a = 120 độ ,ab=3cm,ac=6cm.tính độ dài đường phân giác ad
Cho tam giác ABC có góc BAC=120 độ.Các đường phân giác ad,be,cf.
CM:1/AD=1/AB+1/AC