Cho f(x)là một đa thức thỏa mãn lim x → 1 f x − 16 x − 1 = 24. Tính lim x → 1 f x − 16 x − 1 2 f x + 4 + 6 .
A. I = 24
B. I = + ∞
C. I = 2
D. I = 0
Cho đa thức f(x) thỏa mãn điều kiện (x-1).f(x)= (x+4).f(x+8) . chứng minh rằng đa thức f(x) có ít nhất một nghiệm là số nguyên tố
cho f(x) là một đa thức thỏa mãn điều kiện 3f(x) + 2f(1-x) = 2x + 9 . Tính f(2)
Với \(x=2\): \(3f\left(2\right)+2f\left(-1\right)=2.2+9=13\)
Với \(x=-1\):\(3f\left(-1\right)+2f\left(2\right)=2.\left(-1\right)+9=7\)
Giải hệ trên thu được \(\hept{\begin{cases}f\left(2\right)=5\\f\left(-1\right)=-1\end{cases}}\).
Cho f(x) là một đa thức thỏa mãn điều kiện 3f(x) + 2f(1-x) = 2x+9. Tính f(2)
Ta có 3f(x) +2f(1-x)=2x+9\(\Rightarrow\)3f(2)+2f(1-2)=2.2+9\(\Leftrightarrow\)3f(2)-2f(2)=13\(\Rightarrow\)f(2)=13
Cho f(x) là hàm đa thức thỏa \(\lim\limits_{x\rightarrow2}\dfrac{f\left(x\right)+1}{x-2}=a\left(a\in R\right)\) và tồn tại \(\lim\limits_{x\rightarrow2}\dfrac{\sqrt{f\left(x\right)+2x+1}-x}{x^2-4}=T\left(T\in R\right).\) Tìm T theo a.
\(\lim\limits_{x\rightarrow2}\dfrac{f\left(x\right)+1}{x-2}\) hữu hạn \(\Rightarrow f\left(x\right)+1=0\) có nghiệm \(x=2\Rightarrow f\left(2\right)=-1\)
\(\lim\limits_{x\rightarrow2}\dfrac{\sqrt{f\left(x\right)+2x+1}-x}{x^2-4}=\lim\limits_{x\rightarrow2}\dfrac{1}{\sqrt{f\left(x\right)+2x+1}+x}.\dfrac{\left(\sqrt{f\left(x\right)+2x+1}-x\right)\left(\sqrt{f\left(x\right)+2x+1}+x\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\lim\limits_{x\rightarrow2}\dfrac{1}{\left(x+2\right)\left(\sqrt{f\left(x\right)+2x+1}+x\right)}.\dfrac{f\left(x\right)+1-x\left(x-2\right)}{x-2}\)
\(=\lim\limits_{x\rightarrow2}\dfrac{1}{\left(x+2\right)\left(\sqrt{f\left(x\right)+2x+1}+x\right)}.\left(\lim\limits_{x\rightarrow2}\dfrac{f\left(x\right)+1}{x-2}-\lim\limits_{x\rightarrow2}\dfrac{x\left(x-2\right)}{x-2}\right)\)
\(=\dfrac{1}{4\left(\sqrt{4}+2\right)}.\left(a-2\right)=\dfrac{a-2}{16}\)
Cho đa thức f(x) thỏa mãn điều kiện :
(x-1).f(x)=(x+4).f(x+8), với mọi x\(\in\)R
Chứng minh đa thức f(x) có ít nhất một nghiệm là số nguyên tố
ta có:(x-1).f(x)=(x+4).f(x+8) với mọi x. (*)
=>(*) đúng với giá trị x=1
Với x=1 thay vào (*) ta được (1-1).f(1)=(1+4).f(1+8)
=> 0.f(1)=5.f(9) =>f(9)=0
=> x=9 là 1 nghiệm của f(x)
Thay f(9)=0 vào (*) ta được
(9-1).f(9)=(9+4).f(9+8) => 8.f(9)=13.f(17)
=>8.0=13.f(17) => 0=13.f(17)
=> f(17)=0
=>17 là 1 nghiệm của f(x)
vậy có ít nhất 1 nghiệm là số nguyên tố
tk mk nha bn
*****Chúc bạn học giỏi*****
cho đa thức f(x) thỏa mãn điều kiện :
(x-1).f(x)=(x+4).f(x+8) , với x\(\in\)R
Chứng minh đa thức f(x) có ít nhất một nghiệm là số nguyên tố
bài 1: Cho 2 đa thức P(x) và Q(x) thỏa mãn điều kiện: P(x)=Q(x)+ Q(1-x) vs mọi x thuộc R
Biết rằng các hệ số của đa thức P(x) là các số nguyên ko âm và P(0)=0. Tính P(P(3))
Bài 2: Cho đa thức f(x) là đa thứ bậc 4 có hệ số cao nhất là 1 thỏa mãn; f(1)=3;f(3)=11;f(5)=27
Tính f(-2) + 7*f(6)
Bài 10. Cho đa thức f(x) thỏa mãn (x - 4) f(x + 1) = (x-1) f(x) Chứng tỏ rằng đa thức f(x) có ít nhất 3 nghiệm
Cho đa thức f(x) thỏa mãn: (x-1).f(x)=(x+2).f(x+3) với mọi x tìm 5 nghiệm của đa thức f(x)
cho đa thức f(x) thỏa mãn: (x-1).f(x)=(x+2).f(x+3) với mọi x tìm 5 nghiệm của đa thức f(x)