Gọi S là tập hợp các giá trị nguyên của tham số m sao cho hàm số y = x - 1 x - m nghịch biến trên khoảng 4 ; + ∞ . Tính tổng P của các giá trị m của S.
A. P = 10
B. P = 9
C. P = - 9
D. P = - 10
Cho hàm số y = x 3 - 3 ( m + 1 ) x 2 + 3 ( 7 m - 3 ) x . Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để hàm số không có cực trị. Số phần tử của S là
A. 2
B. 4
C. 0
D. Vô số
Cho hàm số y = - x 3 + m x 2 - ( m 2 + m + 1 ) x . Gọi S là tập hợp giá trị thực của tham số m sao cho giá trị nhỏ nhất của hàm số trên đoạn [-1;1] bằng -6. Tính tổng các phần tử của S
A. 0.
B. 4.
C. -4
D. 2 2
Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để đường thẳng d: y=-x+m cắt đồ thị hàm số y = - 2 x + 1 x + 1 tại hai điểm phân biệt A, B sao cho A B ≤ 2 2 . Tổng giá trị tất cả các phần tử của S bằng
A. -6
B. 0
C. 9
D. -27
Hình vẽ bên là đồ thị của hàm số y=f(x). Gọi S là tập hợp các giá trị nguyên dương của tham số m để hàm số y = f x − 1 + m có 5 điểm cực trị. Tổng giá trị tất cả các phần tử của S bằng
A. 12
B. 15
C. 18
D. 9
Hình vẽ bên là đồ thị của hàm số y = f(x). Gọi S là tập hợp các số nguyên dương của tham số m để hàm số y = |f(x – 1) + m| có 5 điểm cực trị. Tổng giá trị tất cả các phần tử của S bằng:
A. 12
B. 15
C. 18
D. 9
Đáp án A.
Phương pháp: Suy ra cách vẽ của đồ thị hàm số y = |f(x – 1) + m| và thử các trường hợp và đếm số cực trị của đồ thị hàm số. Một điểm được gọi là cực trị của hàm số nếu tại đó hàm số liên tục và đổi chiều.
Cách giải: Đồ thị hàm số y = f(x – 1) nhận được bằng cách tịnh tiến đồ thị hàm số y = f(x) sang phải 1 đơn vị nên không làm thay đổi tung độ các điểm cực trị
Đồ thị hàm số y = f(x – 1) + m nhận được bằng cách tịnh tiến đồ thị hàm số y = f(x – 1) lên trên m đơn vị nên ta có: yCD = 2 + m; yCT = –3 + m; yCT = –6 + m
Đồ thị hàm số y = |f(x – 1) + m| nhận được bằng cách từ đồ thị hàm số y = f(x – 1) + m lấy đối xứng phần đồ thị phía dưới trục hoành qua trục hoành và xóa đi phần đồ thị phía dưới trục hoành.
Để đồ thị hàm số có 5 cực trị
=>S = {3;4;5} => 3+4+5 = 12
Cho hàm số f(x)=3sinx +3. Gọi S là tập hợp các giá trị nguyên của tham số m để hàm số y = f 3 ( x ) - 3 m f 2 ( x ) + 3 ( m 2 - 4 ) f ( x ) - m nghịch biến trên khoảng ( 0 ; π 2 ) . Số tập con của S bằng
Cho hàm số y=f(x) có đạo hàm f'(x) = ( x 2 - 1 ) ( x - 2 ) . Gọi S là tập tất cả các giá trị nguyên của tham số m để hàm số f ( x 2 + m ) có 5 điểm cực trị. Số phần tử của tập S là.
A. 4
B. 1
C. 3
D. 2
Cho hàm số \(y=f\left(x\right)\) liên tục trên R, có đạo hàm \(f'\left(x\right)=x\left(x-1\right)^2\left(x-2\right)\) . Gọi S là tập hợp tất cả các giá trị nguyên của tham số m sao cho hàm số \(y=f\left(\dfrac{x+2}{x+m}\right)\) đồng biến trên khoảng \(\left(10;+\infty\right)\) . Tính tổng các phần tử của S.
Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để đường thẳng d : y = - x + m cắt đồ thị hàm số y = - 2 x + 1 x + 1 tại hai điểm phân biệt A, B sao cho A B ≤ 2 2 . Tổng giá trị tất cả các phần tử của S bằng:
A. -6
B. 0
C. 9
D. -27