có bao nhiêu số tự nhiên gồm 5 chữ số có mặt 2 số 1 đứng cạnh nhau và các chữ số còn lại khác nhau
Từ các chữ số 1, 2, 3, 4, 5, 6, 7 có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số khác nhau sao cho :
a, Luôn có mặt số 1 và số 2 và số 1; 2 phải đứng cạnh nhau.
b, Luôn có mặt số 1 và số 2 và số 1; 2 không đứng cạnh nhau.
Từ các chữ số 1, 2, 3, 4, 5, 6, 7 có thể lập được bao nhiêu số tự nhiên gồm 5 chữ
số khác nhau sao cho :
a) Luôn có mặt số 1 và số 2 và số 1; 2 phải đứng cạnh nhau.
b) Luôn có mặt số 1 và số 2 và số 1; 2 không đứng cạnh nhau.
Từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 có thể lập được bao nhiêu số tự nhiên gồm 5
chữ số khác nhau sao cho :
a) Luôn có mặt số 1 và số 2 và số 1; 2 phải đứng cạnh nhau.
b) Luôn có mặt số 1 và số 2 và số 1; 2 không đứng cạnh nhau.
Từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số khác nhau sao cho :
a) Luôn có mặt số 1 và số 2 và số 1; 2 phải đứng cạnh nhau.
b) Luôn có mặt số 1 và số 2 và số 1; 2 không đứng cạnh nhau.
Từ các số 1;2;3;4;5;6 lập được bao nhiêu số tự nhiên gồm tám chữ số sao cho trong mỗi số đó có đúng ba chữ số 1, các chữ số còn lại đôi một khác nhau và hai chữ số chẵn không đứng cạnh nhau?
A. 2612
B. 2400
C. 1376
D. 2530
Chọn B
Bước 1: ta xếp các số lẻ: có các số lẻ là 1,1,3,5 vậy có 5 ! 3 ! cách xếp.
Bước 2: ta xếp 3 số chẵn 2, 4, 6 xen kẽ 5 số lẻ trên có 6 vị trí để xếp 3 số vậy có A 6 3 cách xếp.
Vậy có 5 ! 3 ! A 6 3 = 2400 số thỏa mãn yêu cầu bài toán.
1. Có bao nhiêu số tự nhiên gồm 5 chữ số đôi một khác nhau trong đó các chữ số 0 và 1 đứng cạnh nhau và luôn xuất hiện.
2. Có bao nhiêu số tự nhiên gồm 5 chữ số khác nhau trong đó phải có ít nhất 1 trong 2 số là 0 hoặc 5.
1. số tự nhiên có dạng abce ( nhớ gạch trê đầu ( vì đây là số tự nhiên))
* ta có h là :
h= mn
trong đó tập hợp mn là {0,1}
=> có 2 trường hợp xảy ra
(m,n)=(1,0) hoặc (0,1)
* ta có số tự nhiên abhe có tập hợp {h,2,3,4,5,6,7,8,9}
a có 9 cách chọn
b có 8 cách chọn
c có 7 cách chọn
e có 6 cách chọn
vậy có 9*8*7*6=3024 số
*ta phải loại trường hợp h đứng đầu và có dạng 01
trường hợp h đứng đầu và có dạng 01 có số cách chọn là :
a có 1 cách chọn là h
b có 8 cách
c có 7 cách
e có 6 cách
=> có 1*8*7*6=336 số
vậy số tự nhiên theo yêu cầu đề bài có tổng cộng
3024 - 332688 số
0 chắc
Từ các chữ số 0;1;2;3;4;5;6;7;8;9 . Có thể lập bao nhiêu số tự nhiên có 5 chữ số
a, Trong đó chữ số 5 có mặt 2 lần, các chữ số còn lại có mặt không quá một lần.
b. Chữ số đứng sau lớn hơn chữ số đứng trước
c. Khác nhau luôn có mặt chữ số 1,2 và chúng không đứng cạnh nhau
a)Có bao nhiêu số tự nhiên gồm 6 chữ số khác nhau trong đó có 3 chẵn 3 lẻ
b)Có bao nhiêu số tự nhiên gồm 6 chữ số khác nhau trong đó các chữ số chẵn không đứng cạnh nhau
c)Có bao nhiêu số tự nhiên có 8 chữ số khác nhau sao cho có 2 chữ số 1, 3 chữ số 0, các chữ số có quá 1 lần
a) TH1 : Xét số thỏa yêu cầu kể cả chữ số đầu tiên bên trái =0
Chọn 3 chữ số lẻ có C35 cách
Chọn 3 chữ số chẵn có C35 cách
Sắp xếp 6 chữ số này có 6! cách
Vậy có C35 . C35 . 6! số
TH2 : Xét số có 6 chữ số thỏa mãn mà chữ số đầu tiên bên trái =0
Chọn 3 chữ số lẻ có C35 cách
Chọn 2 chữ số chẵn có C24 cách
Sắp xếp 5 chữ số có 5! cách
Vậy có C35 . C24 . 5! số
Vậy có C35 .C35. 6! - C35.C24.5! số tự nhiên gồm 6 chữ số khác nhau trong đó có 3 chữ số chẵn 3 chữ số lẻ
Từ các chữ số 1, 2, 3, 4, 5, 6, 7 có thể lập được bao nhiêu số tự nhiên gồm 5 chữ
số khác nhau sao cho :
a) Luôn có mặt số 1, số 2 và số 3.
b) Luôn có mặt số 1, số 2 , số 3 và 3 số này phải đứng cạnh nhau.
c) Luôn có mặt 2 số chẵn và 3 số lẻ