Tìm x, y biết: |x - 2006| + |x - 2012| \(\le\) 0
Tìm x, y biết: |x - 2006y| + |x - 2012| \(\le\) 0
VT nhầm nha x-1006y chứ ko phải x-2006y đâu, nếu đúng thì làm như sau:
Vì VT các số hạng chứa dấu giá trị tuyệt đối nên VT lớn hơn hoặc bằng 0
Điều kiện để BĐT trên đúng thì VT=0
Suy ra : x-2012=0 và x-2006y=0
<=>x=2012 và y=1006/1003
tìm x, y ,z biết: |x-6| + |x-10| + | x-2012| + |y- 2014| + | z-2015| = 2006
Tìm x, y biết:
|x - 2006y| + |x - 2012| \(\le\) 0
|x-2006y| > 0
|x-2012| > 0
=>|x-1006y|+|x-2012| > 0
theo đề: |x-2006y|+|x-2012| < 0
=>|x-2006y|=|x-2012|=0
=>x=2012 và x=2006y
=>y=2012/2006=1006/1003
vậy x=2012;y=1006/1003
a) Tìm x, y, z là số nguyên, biết rằng: |x + 20| + |y - 11| + |z + 2007| ≤ 0
b) Tìm x, y là số nguyên, biết rằng: |x - 2005| + |x - 2006|+|y - 2007|+|x - 2008| =3
Tìm x,y biết (2x-5)^2012+(3y+4)^2014\(\le\)0
Ta có:
\(\left\{{}\begin{matrix}\left(2x-5\right)^{2012}\ge0\\\left(3y+4\right)^{2014}\ge0\end{matrix}\right.\forall xy.\)
=> \(\left(2x-5\right)^{2012}+\left(3y+4\right)^{2014}\ge0\) \(\forall xy\)
Mà \(\left(2x-5\right)^{2012}+\left(3y+4\right)^{2014}\le0.\)
=> \(\left(2x-5\right)^{2012}+\left(3y+4\right)^{2014}=0\)
=> \(\left(2x-5\right)+\left(3y+4\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}2x-5=0\\3y+4=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x=5\\3y=-4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=5:2\\y=\left(-4\right):3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\frac{5}{2}\\y=-\frac{4}{3}\end{matrix}\right.\)
Vậy \(\left(x;y\right)\in\left\{\frac{5}{2};-\frac{4}{3}\right\}.\)
Chúc em học tốt!
Tìm x,y thỏa mãn 1 trong những điều kiện sau:
a, x + y = /x/ + /y/
b, x + y = /x/ - /y/
c, ( 2x - 5)2004 + ( 3y + 4 )2006 \(\le\) 0
Đang cần gấp
Tìm đa thức M biết rằng : M + (5x^2 - 2xy) = 6x^2 + 9xy - y^2.
Tính giá trị của M khi x,y thỏa mãn (2x-5)^2012 + (3y+4)^2014 \(\le\)0
Ta có : \(\left(2x-5\right)^{2012}\ge0\forall x\)
\(\left(3y+4\right)^{2014}\ge0\forall y\)
\(\rightarrow\left(2x-5\right)^{2012}+\left(3y+4\right)^{2014}\ge0\forall x,y\)
Theo bài : \(\left(2x-5\right)^{2012}+\left(3y+4\right)^{2014}\le0\)
\(\rightarrow\left(2x-5\right)^{2012}+\left(3y+4\right)^{2014}=0\)
\(\rightarrow\left(2x-5\right)^{2012}=0,\left(3y+4\right)^{2014}=0\)
\(\rightarrow2x-5=0,3y+4=0\)
\(\rightarrow x=\frac{5}{2};y=\frac{-4}{3}\)
Tự tìm M nhé bạn
1, M + (5x2-2xy)= 6x2+9xy-y2
M =(6x2+9xy-y2)- (5x2-2xy)
M = 6x2+9xy-y2-5x2+2xy
M = (6x2-5x2)+(9xy+2xy)-y2
M = x2+11xy-y2
* M + ( 5x2 - 2xy ) = 6x2 + 9xy - y2
<=> M = ( 6x2 + 9xy - y2 ) - ( 5x2 - 2xy )
<=> M = 6x2 + 9xy - y2 - 5x2 + 2xy
<=> M = x2 + 11xy - y2
* \(\left(2x-5\right)^{2012}+\left(3y+4\right)^{2014}\le0\)
Ta có : \(\hept{\begin{cases}\left(2x-5\right)^{2012}\ge0\forall x\\\left(3y+4\right)^{2014}\ge0\forall y\end{cases}\Rightarrow}\left(2x-5\right)^{2012}+\left(3y+4\right)^{2014}\ge0\)
Dấu = xảy ra <=> \(\hept{\begin{cases}\left(2x-5\right)^{2012}=0\\\left(3y+4\right)^{2014}=0\end{cases}}\)
<=> \(\hept{\begin{cases}2x-5=0\\3y+4=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{5}{2}\\y=-\frac{4}{3}\end{cases}}\)
Thay x = 5/2 ; y = -4/3 vào M ta được :
\(M=\left(\frac{5}{2}\right)^2+11\cdot\frac{5}{2}\cdot\left(-\frac{4}{3}\right)-\left(-\frac{4}{3}\right)^2\)
\(M=\frac{25}{4}+\frac{-110}{3}-\frac{16}{9}\)
\(M=\frac{-1159}{36}\)
Vậy M = -1159/36 khi x = 5/2 ; y = -4/3
Tìm x,y biết:
(x+3)^2004 + (y-1)^2006 =0
\(\hept{\begin{cases}\left(x+3\right)^{2004}\ge0\\\left(y-1\right)^{2006}\ge0\end{cases}}\)=> để có đẳng thức cả hai cùng =0\(\Rightarrow\hept{\begin{cases}x+3=0\\y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}}\)
1)tìm giá trị nguyên lớn nhất và nhỏ nhất của x sao cho: 1986< |x+2| < 2012
2) tìm x thuộc nguyên :
a) | x-40| + | x-y+10| \(\le\) 0
b) | x+25| + | y+5| = 0
A=[(-4x-8)+13]/(x+2)
=-4+13/(x+2) thuộc Z <=> 13/(x+2) thuộc Z <=> 13 chia hết cho (x+2)(do x thuộc Z)
hay (x+2) thuộc Ư(13)={-1;1;13;-13}
tìm x
B=[(x²-1)+6]/(x-1)
=x+1+6/(x-1)
làm tiếp như A
C=[(x²+3x+2)-3]/(x+2)
=[(x+2)(x+1)-3]/(x+2)
=x+1-3/(x+2)
làm tiếp như A
2/cậu cho đề thiếu đọc lại đề xem A có thuộc Z không
3,4 cũng vậy