Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 3 2017 lúc 5:03

Chọn C

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 8 2019 lúc 4:12


Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 1 2017 lúc 8:01

Đáp án A.

Gọi R là bán kính của hình cầu (S). Bài toán có thể quy về: “Cho đường tròn tâm O, bán kính R ngoại tiếp hình vuông ABCD và nội tiếp ∆ S E F  đều” (hình vẽ).

Hình vuông ABCD nội tiếp đường tròn (O) nên

A B = B D = 2 R = A B 2 ⇔ A B = 2 R  .

⇒  Bán kính đáy và chiều cao của hình trụ (T) lần lượt là r = A B 2 = 2 R 2  và h = A B = 2 R  .

Thể tích khối trụ là V T = πr 2 h = π . 2 R 2 2 . 2 R = π 2 R 3 2 .

Ta có  ∆ S E F  đều và ngoại tiếp đường tròn (O) nên O là trọng tâm của Δ S E F .

 

Gọi H là trung điểm của EF thì  S H = 3 O H = 3 R ⇒ H F = S H . tan 30 ° = R 3

⇒  Bán kính đáy và chiều cao của hình nón (N) lần lượt là H F = R 3  và S H = 3 R . Thể tích khối nón là V N = 1 3 π . HF 2 . SH = 1 3 π R 3 2 . 3 R = 3 πR 3 .

Vậy V T V N = π 2 R 3 2 3 πR 3 = 2 6 .

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
31 tháng 7 2019 lúc 14:51

Đáp án A.

Gọi R là bán kính của hình cầu (S). Bài toán có thể quy về: “Cho đường tròn tâm O, bán kính R ngoại tiếp hình vuông ABCD và nội tiếp ∆ SEF đều” (hình vẽ).

=>Bán kính đáy và chiều cao của hình trụ (T) lần lượt là 

 

và 

Thể tích khối trụ là 

Ta có  ∆ SEF đều và ngoại tiếp đường tròn (O) nên O là trọng tâm của ∆ SEF.

Gọi H là trung điểm của EF thì 

Hình vuông ABCD nội tiếp đường tròn (O) nên SH = 3OH = 3R

 Bán kính đáy và chiều cao của hình nón (N) lần lượt là 

Thể tích khối nón là 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 8 2019 lúc 3:25

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 7 2017 lúc 11:39

Giải bài 3 trang 99 sgk Hình học 12 | Để học tốt Toán 12

Gọi H là tâm mặt đáy của hình nón, O là tâm mặt cầu (S), đường thẳng IH cắt mặt cầu (S) tại điểm K.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 1 2017 lúc 14:33

Chọn A

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 3 2018 lúc 12:59

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giả sử đường cao SI của hình nón (H) cắt hai đáy của hình trụ (H') tại I và I'.

Khi đó Giải sách bài tập Toán 12 | Giải sbt Toán 12

Do đó Giải sách bài tập Toán 12 | Giải sbt Toán 12

Từ đó suy ra Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Do đó Giải sách bài tập Toán 12 | Giải sbt Toán 12

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 7 2018 lúc 14:48

Đáp án A.

Kí hiệu như hình vẽ.

Ta thấy I K = r '  là bán kính đáy của hình chóp, A I = h  là chiều cao của hình chóp.

Tam giác  vuông tại KIK là đường cao

⇒ I K 2 = A I . I M ⇒ r ' 2 = h . 2 r − h

Ta có V c o h p = 1 3 . π r ' 2 . h = 1 3 . π . h . h . 2 r − h = 4 3 π . h 2 . h 2 2 r − h .

Áp dụng bất đẳng thức Cauchy ta có  

h 2 . h 2 . 2 r − h ≤ h 2 + h 2 + 2 r − h 3 27 = 8 r 3 27

⇔ V c h o p ≤ 4 3 π . 8 r 3 27 = 32 81 . π r 3

Dấu bằng xảy ra khi h 2 = 2 r − h ⇔ h = 4 r 3   . Vậy ta chọn A