Hình nón nội tiếp trong mặt cầu với góc ở đỉnh bằng 120 o và thể tích bằng 1. Tính thể tích mặt cầu đó.
Hình nón nội tiếp trong mặt cầu bán kính R. Biết góc ở đỉnh hình nón bằng 1200. Tính thể tích V của hình nón theo R
Một hình nón có góc ở đỉnh bằng 2 17 nội tiếp trong một hình cầu. Biết thể tích khối nón bằng 5 2 4 . Tính thể tích khối cầu.
Tính diện tích xung quanh (S) của hình nón nội tiếp một mặt cầu bán kính R (nghĩa là đỉnh và đường tròn đáy hình nón đều thuộc mặt cầu), biết góc ở đỉnh hình nón bằng 90 o
Hình nón có đỉnh là tâm mặt cầu (S) góc ở đỉnh hình nón bằng 120 o đường tròn đáy hình nón thuộc mặt cầu (S) Tính tỷ số k = V N V C ( V N , V C là thể tích hình nón và hình cầu kể trên).
Cho hình cầu (S) tâm O, bán kính R. Hình cầu (S) ngoại tiếp một hình trụ tròn xoay (T) có đường cao bằng đường kính đáy và hình cầu (S) lại nội tiếp trong một nón tròn xoay (N) có góc ở đỉnh bằng 60 ° . Tính tỉ số thể tích của hình trụ (T) và hình nón (N).
Người ta chế tạo một món đồ chơi cho trẻ em theo các công đoạn như sau: Trước tiên chế tạo ra hình nón tròn xoay có góc ở đỉnh là
2
α
=
60
°
bằng thủy tinh trong suốt. Sau đó đặt hai quả cầu nhỏ bằng thủy tinh có bán kính lớn, nhỏ khác nhau sao cho hai mặt cầu tiếp xúc với nhau sao cho hai mặt cầu tiếp xúc với nhau và đều tiếp xúc với mặt nón, quả cầu lớn tiếp xúc với mặt đáy của hình nón (hình vẽ). Biết rằng chiều cao của hình nón bằng 9cm. Bỏ qua bề dày các lớp vỏ thủy tinh, tổng thể tích của hai khối cầu bằng
Cho hình cầu (S) tâm O, bán kính R. Hình cầu (S) ngoại tiếp một hình trụ tròn xoay (T) có đường cao bằng đường kính đáy và hình cầu (S) lại nội tiếp trong một hình nón tròn xoay (N) có góc ở đỉnh bằng 60 ° . Tính tỉ số thể tích của hình trụ (N) và hình nón (T).
A. V T V N = 2 6
B. V T V N = 2 3
C. V T V N = 3 2
D. Đáp án khác
Đáp án A.
Gọi R là bán kính của hình cầu (S). Bài toán có thể quy về: “Cho đường tròn tâm O, bán kính R ngoại tiếp hình vuông ABCD và nội tiếp ∆ S E F đều” (hình vẽ).
Hình vuông ABCD nội tiếp đường tròn (O) nên
A B = B D = 2 R = A B 2 ⇔ A B = 2 R .
⇒ Bán kính đáy và chiều cao của hình trụ (T) lần lượt là r = A B 2 = 2 R 2 và h = A B = 2 R .
Thể tích khối trụ là V T = πr 2 h = π . 2 R 2 2 . 2 R = π 2 R 3 2 .
Ta có ∆ S E F đều và ngoại tiếp đường tròn (O) nên O là trọng tâm của Δ S E F .
Gọi H là trung điểm của EF thì S H = 3 O H = 3 R ⇒ H F = S H . tan 30 ° = R 3
⇒ Bán kính đáy và chiều cao của hình nón (N) lần lượt là H F = R 3 và S H = 3 R . Thể tích khối nón là V N = 1 3 π . HF 2 . SH = 1 3 π R 3 2 . 3 R = 3 πR 3 .
Vậy V T V N = π 2 R 3 2 3 πR 3 = 2 6 .
Cho hình cầu (S) tâm O, bán kính R. Hình cầu (S) ngoại tiếp một hình trụ tròn xoay (T) có đường cao bằng đường kính đáy và hình cầu (S) lại nội tiếp trong một hình nón tròn xoay (N) có góc ở đỉnh bằng 60 0 . Tính tỉ số thể tích của hình trụ (T) và hình nón (T) .
A . V T V N = 2 6
B . V T V N = 2 3
C . V T V N = 3 2
D. Đáp án khác
Đáp án A.
Gọi R là bán kính của hình cầu (S). Bài toán có thể quy về: “Cho đường tròn tâm O, bán kính R ngoại tiếp hình vuông ABCD và nội tiếp ∆ SEF đều” (hình vẽ).
=>Bán kính đáy và chiều cao của hình trụ (T) lần lượt là
và
Thể tích khối trụ là
Ta có ∆ SEF đều và ngoại tiếp đường tròn (O) nên O là trọng tâm của ∆ SEF.
Gọi H là trung điểm của EF thì
Hình vuông ABCD nội tiếp đường tròn (O) nên SH = 3OH = 3R
Bán kính đáy và chiều cao của hình nón (N) lần lượt là
Thể tích khối nón là
Cho hình cầu (S) tâm O, bán kính R. Hình cầu (S) ngoại tiếp một hình trụ tròn xoay (T) có đường cao bằng đường kính đáy và hình cầu (S) lại nội tiếp trong một hình nón tròn xoay (N) có góc ở đỉnh bằng 60 ° . Tính tỉ số thể tích của hình trụ (N) và hình nón (T).
A. V T V N = 2 6
B. V T V N = 2 3
C. V T V N = 3 2
D. Đáp án khác