Cho hàm số y=f(x) bảng biến thiên như sau:
Phát biểu nào sau đây đúng?
A. Hàm số đạt cực đại tại x=2
B. Hàm số đạt cực đại tại x=4
C. Hàm số có 3 cực tiểu
D. Hàm số đạt cực tiểu là 0
Cho hàm số f(x) xác định trên D = [ 0 ; 10 ) \ { 1 } có bảng biến thiên như hình vẽ, trong các mệnh đề sau có bao nhiêu mệnh đề đúng.
i. Hàm số có cực tiểu là 3.
ii. Hàm số đạt cực đại tại x=1 .
iii. Hàm số có giá trị cực đại là 12.
iv. Hàm số có cực tiểu là -6 .
A. 0
B. 1
C. 2
D. 3
Cho hàm số y=f(x) có bảng biến thiên như sau:
Hàm số đạt cực tiểu tại điểm nào?
Cho hàm số y = f (x) có bảng biến thiên như sau:
Hàm số đạt cực tiểu tại điểm nào?
A. x = 4
B. x = 0
C. x = 2
D. x = 1
Cho hàm số y = f(x) xác định trên D = − 1 ; + ∞ \ 1 . Dưới đây là một phần đồ thị của y = f(x)
Hỏi trong các mệnh đề sau, có bao nhiêu mệnh đề đúng:
(I) Số điểm cực đại của hàm số trên tập xác định là 1.
(II) Hàm số có cực tiểu là -2 tại x = 1
(III) Hàm số đạt cực đại tại x = 2
(IV) Hàm số đạt cực đại tại x = -1
A. 0
B. 1
C. 2
D. 3
Hình ảnh trên là một phần đồ thị của y trên tập xác định. Ta thấy rằng hàm số đạt cực đại tại x = 2 nhưng không chắc rằng có còn điểm cực đại nào khác trên những khoảng rộng hơn hay không (I) sai, (III) đúng.
Hàm số không xác định tại x = 1 nên không thể đạt cực tiểu tại điểm này =>(II) sai.
Chọn B
Cho hàm số y=f(x) có bảng biến thiên như sau.
Hàm số y=f(x) đạt cực tiểu tại điểm nào trong các điểm được cho dưới đây?
A. x=2
B. x=-3
C. x=1
D. x=0
Dựa vào bảng biến thiên, ta thấy đạo hàm đổi dấu từ âm sang dương khi đi qua x=2 nên hàm số y=f(x) đạt cực tiểu tại điểm x=2
Cho hàm số y = f(x) có bảng biến thiên như sau.
Hàm số đạt cực tiểu tại điểm
A. x = 2
B. x = -1
C. x = 0
D. x = 1
Chọn đáp án C.
Dựa vào bảng biến thiên suy ra hàm số đạt cực tiểu tại x = 0.
Cho hàm số y=f(x) có đạo hàm liên tục trên R và có đồ thị hàm số y=f' (x) như hình vẽ bên. Xét hàm số g(x)=f(x^2-3) và các mệnh đề sau:
1. Hàm số g(x) có 3 điểm cực trị.
2. Hàm số g(x)đạt cực tiểu tại x = 0.
3. Hàm số g(x)đạt cực đại tại x = 2.
4. Hàm số g(x)đồng biến trên khoảng (-2;0).
5. Hàm số g(x)nghịch biến trên khoảng (-1;1).
Có bao nhiêu mệnh đề đúng trong các mệnh đề trên?
A. 1.
B. 4.
C. 3.
D. 2.
Cho hàm số y=f(x) có đạo hàm liên tục trên R và có đồ thị hàm số y=f '(x) như hình vẽ bên dưới. Xét hàm số g(x)=f(x^2-3) và các mệnh đề sau:
I. Hàm số có 3 điểm cực trị.
II. Hàm số g(x)đạt cực tiểu tại x=0
III. Hàm số g(x) đạt cực đại tại x=2
IV. Hàm số g(x) đồng biến trên khoảng (-2;0)
V. Hàm số g(x) nghịch biến trên khoảng (-1;1)
Có bao nhiêu mệnh đề đúng trong các mệnh đề trên?
A.1
B.4
C.3
D.2
Chọn D
Xét hàm số .
Có
.
Ta lại có thì . Do đó thì .
thì . Do đó thì .
Từ đó ta có bảng biến thiên của như sau
Dựa vào bảng biến thiên, ta có
I. Hàm số có 3 điểm cực trị . LÀ MỆNH ĐỀ ĐÚNG.
II. Hàm số đạt cực tiểu tại LÀ MỆNH ĐỀ SAI.
III. Hàm số đạt cực đại tại LÀ MỆNH ĐỀ SAI.
IV. Hàm số đồng biến trên khoảng LÀ MỆNH ĐỀ ĐÚNG.
V. Hàm số nghịch biến trên khoảng LÀ MỆNH ĐỀ SAI.
Vậy có hai mệnh đề đúng.
ở chỗ x<1=> x= -2 thì sao bạn ơi =>(x^2 -3) =1 >0 thì sao f ' (...)>0 được ????
Cho hàm số y=f(x) có bảng biến thiên như sau
Hàm số y=f(x) đạt cực đại tại
A. x = - 2
B. x = - 1
C. x = 2
D. x = 0
Đáp án D
Phương pháp:
Quan sát bảng biến thiên, tìm điểm mà f’(x)=0 hoặc f’(x) không xác định.
Đánh giá giá trị của f’(x) và chỉ ra cực đại, cực tiểu của hàm số y = f(x):
- Cực tiểu là điểm mà tại đó f’(x) đổi dấu từ âm sang dương.
- Cực đại là điểm mà tại đó f’(x) đổi dấu từ dương sang âm.
Cách giải:
Quan sát bảng biến thiên, ta thấy: Hàm số y = f(x) đạt cực đại tại x = 0
Cho hàm số y=f(x) có đạo hàm trên đoạn [a;b]. Ta xét các khẳng định sau:
1) Nếu hàm số f(x) đạt cực đại tại điểm x 0 ∈ a ; b thì f x o là giá trị lớn nhất của f(x) trên đoạn [a;b]
2) Nếu hàm số f(x) đạt cực đại tại điểm x 0 ∈ a ; b thì f x o là giá trị nhỏ nhất của f(x) trên đoạn [a,b]
3) Nếu hàm số f(x) đạt cực đại tại điểm x 0 và đạt cực tiểu tại điểm x 1 x 0 , x 1 ∈ a ; b thì ta luôn có f x 0 > f x 1
Số khẳng định đúng là?
A. 1
B. 2
C. 0
D. 3
Đáp án A
Hàm số f(x) xác định trên D⊆ R
Điểm
x
0
∈ D được gọi là điểm cực đại của hàm số f(x) nếu tồn tại một khoảng (a;b)⊂ D sao cho
x
0
∈ (a;b) và f(
x
0
)>f(x),∀x ∈ (a,b)∖{
x
0
}.