Cho số phức z = a + ( a 2 + 1 ) i với a ∈ R Khi đó, điểm biểu diễn của số phức liên hợp của z thuộc đường nào sau đây?
Cho số phức z thỏa mãn ( - 1 + i ) z + 2 1 - 2 i = 2 + 3 i . Số phức liên hợp của z là z ¯ = a + b i với a,b thuộc R. Giá trị của a+b bằng
A.-1
B.-12
C.-6
D.1
Câu 1 : Cho số phức \(z\) thỏa mãn \(z\) + ( 2 - i )\(\overline{z}\) = 3 - 5i. Môđun của số phức w = \(z \) - i bằng bao nhiêu ?
Câu 2 : Cho số phức \(z\) = a + bi, (a,b ∈ R ) thỏa mãn ( 3 + 2i )\(z\) + ( 2 - i )2 = 4 + i. Tính P = a - b
Xét các số phức z = a + bi (a,b ϵ R) thỏa mãn z - 4 - 3 i = z - - 2 + i . Tính P = a 2 + b 2 khi z + 1 - 3 i + z - 1 + i đạt giá trị nhỏ nhất.
A. P = 293/9
B. P = 449/32
C. P = 481/32
D. P = 137/9
Cho số phức z = a + a 2 + 1 i với a ∈ R . Khi đó, điểm biểu diễn của số phức liên hợp của z thuộc đường nào sau đây?
A. Đồ thị hàm số y = - x - 1
B. Đồ thị hàm số y = x - 1
C. Parabol y = x 2 + 1
D. Parabol y = - x 2 - 1
Xét các số phức z = a + b i , ( a , b ∈ R ) thỏa mãn 4 ( z - z ¯ ) - 15 i = i ( z + z ¯ - 1 ) 2 . Tính F = - a + 4 b khi z - 1 2 + 3 i đạt giá trị nhỏ nhất
Cho số phức thỏa mãn: z=a+bi, ( a , b ∈ R ) thỏa mãn: z ( 2 + i ) = z - 1 + i ( 2 z + 3 ) . Tính S = a + b
Xét các số phức z = a + b i a , b ∈ R thỏa mãn |z-4-3i|=2. Khi |z+1-3i|+|z-1+i| đạt giá trị lớn nhất, giá trị của a – 2b bằng
A. 1
B. -2
C. - 5
D. -1
Với
Khi đó
Dấu bằng đạt tại
⇒ a - 2 b = - 2
Chọn đáp án B.
Mẹo trắc nghiệm: Có
Khi đó
Khi đó a-2b
Chọn đáp án B.
Cho hai số phức \(z_1,z_2\) thỏa mãn \(\left|z_1+3+2i\right|=1\) và \(\left|z_2+2-i\right|=1\). Xét các số phức \(z=a+bi\), (\(a,b\in R\)) thỏa mãn \(2a-b=0\). Khi biểu thức \(T=\left|z-z_1\right|+\left|z-2z_2\right|\) đạt giá trị nhỏ nhất thì giá trị biểu thức \(P=a^2+b^2\) bằng?
Cho số phức z = a + ( a - 3 )i với a ∈ R . Tìm a để khoảng cách từ điểm biểu diễn của số phức z đến gốc tọa độ là nhỏ nhất
A. 2 3
B. 3 2
C. 3 2
D. 2 3
Gọi M là điểm biểu diễn số phức z. Khi đó
O M = z = a 2 + a - 3 2 = 2 a - 3 2 2 + 9 2 ≥ 3 2
Dấu “=” xảy ra khi a = 3 2
Đáp án C