Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mỹ Nguyễn ngọc
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 9 2019 lúc 16:25

Khi a = 1, ta có phương trình:

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

⇔ x + 1 2  + (x – 1)(1 – x) = 4

⇔ x 2  + 2x + 1 + x –  x 2  – 1 + x = 4

⇔ 4x = 4 ⇔ x = 1 (loại)

Vậy phương trình vô nghiệm.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 2 2019 lúc 7:56

Khi a = 0, ta có phương trình:

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Phương trình nghiệm đúng với mọi giá trị của x ≠ 0

Vậy phương trình có nghiệm x ∈ R / x  ≠  0.

Nguyen Dang Khoa
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
12 tháng 3 2019 lúc 5:01

Thay x = 1/2 vào phương trình, ta có:

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

ĐKXĐ: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

⇔ (1 + 2a)(2a + 1) + (1 – 2a)(2a – 1) = 4a(3a + 1)

⇔ 2a + 1 + 4 a 2  + 2a + 2a – 1 – 4 a 2  + 2a = 12 a 2  + 4a

⇔ 12 a 2  – 4a = 0 ⇔ 4a(3a – 1) = 0 ⇔ 4a = 0 hoặc 3a – 1 = 0

⇔ a = 0 (thỏa mãn) hoặc a = 1/3 (thỏa mãn)

Vậy khi a = 0 hoặc a = 1/3 thì phương trình  x + a a - x + x - a a + x = a 3 a + 1 a 2 - x 2  có nghiệm x = 1/2

nguyễn việt hà
Xem chi tiết
Kiệt Nguyễn
8 tháng 2 2020 lúc 18:19

1. a = 3 thì phương trình trở thành:

\(\frac{x+3}{3-x}-\frac{x-3}{3+x}=\frac{-3\left[3.\left(-3\right)+1\right]}{\left(-3\right)^2}-x^2\)

\(\Leftrightarrow\frac{\left(x+3\right)^2+\left(3-x\right)^2}{\left(3-x\right)\left(3+x\right)}=\frac{-3\left[-9+1\right]}{9}-x^2\)

\(\Leftrightarrow\frac{x^2+6x+9+x^2-6x+9}{\left(3-x\right)\left(3+x\right)}=\frac{-3.\left(-8\right)}{9}-x^2\)

\(\Leftrightarrow\frac{2x^2+18}{9-x^2}=\frac{24}{9}-x^2\)

\(\Leftrightarrow\frac{2x^2+18}{9-x^2}+x^2=\frac{24}{9}\)

\(\Leftrightarrow\frac{2x^2+18+9x^2-x^4}{9-x^2}=\frac{24}{9}\)

\(\Leftrightarrow\frac{11x^2+18-x^4}{9-x^2}=\frac{24}{9}\)

\(\Leftrightarrow99x^2+18-9x^4=216-24x^2\)

\(\Leftrightarrow9x^4-123x^2+198=0\)

Đặt \(x^2=t\left(t\ge0\right)\)

Phương trình trở thành \(9t^2-123t+198=0\)

Ta có \(\Delta=123^2-4.9.198=8001,\sqrt{\Delta}=3\sqrt{889}\)

\(\Rightarrow\orbr{\begin{cases}t=\frac{123+3\sqrt{889}}{18}=\frac{41+\sqrt{889}}{6}\\t=\frac{123-3\sqrt{889}}{18}=\frac{41-\sqrt{889}}{6}\end{cases}}\)

Lúc đó \(\orbr{\begin{cases}x^2=\frac{41+\sqrt{889}}{6}\\x^2=\frac{41-\sqrt{889}}{6}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\pm\sqrt{\frac{41+\sqrt{889}}{6}}\\x=\pm\sqrt{\frac{41-\sqrt{889}}{6}}\end{cases}}\)

Vậy pt có 4 nghiệm \(S=\left\{\pm\sqrt{\frac{41+\sqrt{889}}{6}};\pm\sqrt{\frac{41-\sqrt{889}}{6}}\right\}\)

Khách vãng lai đã xóa
Inequalities
8 tháng 2 2020 lúc 18:22

Sửa)):

a = -3 mà ghi lôn a = 3.giải tương tự như 3

Khách vãng lai đã xóa
Gia Bảo
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 5 2021 lúc 15:52

\(\Delta=\left(m+1\right)^2-4\left(2m-2\right)=m^2-6m+9=\left(m-3\right)^2\ge0\) ; \(\forall m\)

\(\Rightarrow\) Phương trình luôn có nghiệm với mọi m

꧁❥Hikari-Chanツ꧂
Xem chi tiết
Lê Thị Thục Hiền
7 tháng 7 2021 lúc 17:53

Đk:\(a\ne\pm x\)

Pt \(\Leftrightarrow\dfrac{\left(a+x\right)^2-\left(x-a\right)\left(a-x\right)}{\left(a-x\right)\left(a+x\right)}=\dfrac{a\left(3a+1\right)}{a^2-x^2}\)

\(\Leftrightarrow\dfrac{2\left(a^2+x^2\right)}{a^2-x^2}=\dfrac{a\left(3a+1\right)}{a^2-x^2}\)

\(\Leftrightarrow2a^2+2x^2=3a^2+a\)

\(\Leftrightarrow a^2+a-2x^2=0\) (1)

Thay \(x=\dfrac{1}{2}\) vào (1) ta được:

\(a^2+a-2\left(\dfrac{1}{2}\right)^2=0\)

\(\Leftrightarrow a^2+a-\dfrac{1}{2}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=\dfrac{-1+\sqrt{3}}{2}\\a=\dfrac{-1-\sqrt{3}}{2}\end{matrix}\right.\) (tm)

Vậy...

Lê Thị Mỹ Nga
Xem chi tiết