Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 7 2019 lúc 13:12

Đáp án là A 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 3 2017 lúc 2:25

Chọn đáp án D.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 1 2017 lúc 5:44

Đáp án A

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 4 2017 lúc 2:29

Chọn A

Ta có: g(x) = f(x-2017) - 2018x + 2019.

Nhận xét: tịnh tiến đồ thị hàm số y = f'(x) sang bên phải theo phương của trục hoành 2017 đơn vị ta được đồ thị hàm số y = f'(x-2017) . Do đó, số nghiệm của phương trình f'(x) = 2018 bằng số nghiệm của phương trình (*).

Dựa vào đồ thị ta thấy phương trình (*) có nghiệm đơn duy nhất hay hàm số đã cho có duy nhất 1 điểm cực trị.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 3 2017 lúc 15:51

Đáp án B

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 4 2017 lúc 7:27

Chọn C

Xét hàm số g(x) =  f 3 ( x )   -   3 f ( x )  trên đoạn [-1;2]

Từ bảng biến thiên, ta có: 

Và  nên f(x) đồng biến trên [-1;2] 

nên (2) vô nghiệm

Do đó, g'(x) = 0 chỉ có  nghiệm là x = -1 và x = 2

Ta có 

Vậy 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 12 2018 lúc 2:48

Đặt g ( x ) = 3 f ( x ) - x 3 . Hàm số ban đầu có dạng y=|g(x)| 

Ta có g ' ( x ) = 3 f ' ( x ) - 3 x 2 .

Cho g'(x)=0 ⇔ [ x = 0 x = 1 x = 2

 

Dễ thấy g(0)=0. Ta có bảng biến thiên

Dựa vào BBT suy ra hàm số y=|g(x)| đồng biến trên khoảng (0;2) và a ; + ∞ với g(a)=0

Chọn đáp án C.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
31 tháng 7 2019 lúc 17:09

Chọn C

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 6 2019 lúc 3:59

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 10 2018 lúc 2:51

Đáp án C

Bảng biến thiên của hàm số f(x) là

Hàm số  f x  là hàm số chẵn trên  ℝ nên đồ thị của hàm số nhận trục tung làm trục đối xứng. Do đó phương trình  f ( x ) + m = 0 có bốn nghiệm thực phân biệt khi và chỉ khi phương trình f ( x ) + m = 0 có hai nghiệm dương phân biệt hay phương trình f ( x ) = - m  có hai nghiệm dương phân biệt

⇔ 1 < - m < e 4 ⇔ - e 4 < m < - 1