cho hình bình hành abcd vẽ 1 đường thẳng song song với ac cắt ab và bc lần lượt tại m và n chứng minh rằng diện tích adm bằng diện tích dcn
Cho hình bình hành ABCD. Vẽ đường thẳng song song với AC cắt AB tại M, cắt BC tại N. Chứng minh: diện tích ADM = diện tích CDN.
Vì MN // AC nên
\(\Rightarrow\frac{MA}{BA}=\frac{NC}{BC}\Rightarrow MA.BC=NC.BA\)
\(\Rightarrow MA.AD=NC.DC\)
\(\Rightarrow\frac{1}{2}.MA.AD.\sin\left(\widehat{MAD}\right)=\frac{1}{2}.NC.DC.\sin\left(\widehat{MAD}\right)\)
\(\Rightarrow\Rightarrow\frac{1}{2}.MA.AD.\sin\left(\widehat{MAD}\right)=\frac{1}{2}.NC.DC.\sin\left(\widehat{NCD}\right)\)
\(\Rightarrow S_{ADM}=S_{CDN}\)
Cho hình bình hành ABCD, đường thẳng d song song với AC và cắt AB, BC lần lượt tại M, N.
So sánh diện tích tam giác ADM và diện tích tam giác CDN.
Cho hình thang ABCD (AB song song với CD); O là giao điểm hai đường chéo AC và BD. Đường thẳng qua ô song song với AB cắt AD và BC lần lượt tại M và N
a. Chứng minh rằng :1/AB+1/CD=2/MN
b. Biết diện tích các tam giác AOB; COD theo thứ tự là a^2 và b^2.Hãy tính diện tích hình thang ABCD
Cho tam giác nhọn ABC. Gọi điểm M là trung điểm của đoạn thẳng BC. Từ điểm M vẽ các đường thẳng song song với AC và AB, các đường thẳng song song đó lần lượt cắt AB và AC tại D và E.
1) Chứng minh tứi giác ADME là hình bình hành.
2) Tam giác ABC cần thêm điều kiện gì thì tứ giác ADME là hình chữ nhật, hình vuông?
3) Chứng minh diện tích của tam giác ADE = \(\frac{1}{4}\)diện tích tam giác ABC.
Cho hình bình hành ABCD (góc A nhỏ hớn 90 độ), lấy điểm M trên BD sao cho MB < MD. Đường thẳng qua M và song song với AB cắt AD và BC lần lượt tại E và F. Đường thẳng qua M song song với AD cắt AB và AC lần lượt tại K và H.
1. Chứng minh: các đường thẳng EK, HF, BD đồng quy
2. Cho SMKF = 9 cm2 ; SMEH = 25 cm2 . Tính SABCD.
Đề sai rồi, em kiểm tra lại, EK, HF và BD ko hề đồng quy
Cho hình bình hành ABCD, lấy điểm M trên BD sao cho MB < MD. Đường thẳng qua M và song song với AB cắt AD và BC lần lượt tại E và F. Đường thẳng qua M song song với AD cắt AB và AC lần lượt tại K và H.
1. Chứng minh: các đường thẳng EK, HF, BD đồng quy
2. Cho SMKF = 9 cm2 ; SMEH = 25 cm2 . Tính SABCD.
Đặt tên các điểm như hình vẽ.
Các tứ giác AEMK, BKMF, CFMH, DHME đều là hình bình hành (hai căpj cạnh đối song song theo giả thiết)
\(\Rightarrow MK=BF\) ; \(EF=CD\); \(MH=BC\)
Áp dụng định lý Talet cho tam giác BCD: \(\dfrac{BF}{BC}=\dfrac{MF}{CD}\) \(\Rightarrow\dfrac{MK}{MH}=\dfrac{MF}{EF}\)
\(\Rightarrow KF||EH\) (Talet đảo)
\(\Rightarrow KFHE\) là hình thang
Gọi G là giao điểm EK và HF, theo bổ đề hình thang do M là giao điểm 2 đường chéo hình thang \(\Rightarrow MG\) đi qua trung điểm I và J của 2 đáy KF và EH hay G, M, I, J thẳng hàng
Mặt khác BKMF và DEMH là hbh \(\Rightarrow B;I;M\) và \(D;J;M\) thẳng hàng \(\Rightarrow B;D;I;J;M\) thẳng hàng (do \(I;J;M\) thẳng hàng)
\(\Rightarrow B;D;G\) thẳng hàng
Hay EK, HF, BD đồng quy tại G
b.
Từ E và H hạ vuông góc xuống KF tại L và N
\(\Rightarrow ELNH\) là hình chữ nhật (2 cặp cạnh đối song song và 1 góc vuông) \(\Rightarrow EL=HN\)
\(S_{EFK}=\dfrac{1}{2}EL.KF\) ; \(S_{HFK}=\dfrac{1}{2}HN.KF\)
\(\Rightarrow S_{EFK}=S_{HFK}\Rightarrow S_{EMK}+S_{MFK}=S_{HFM}+S_{MFK}\)
\(\Rightarrow S_{EMK}=S_{HMF}\Rightarrow\dfrac{1}{2}S_{AEMK}=\dfrac{1}{2}S_{SFMH}\Rightarrow S_{AEMK}=S_{SFMH}\)
Hai tam giác MKF và MEH đồng dạng (g.g) \(\Rightarrow\dfrac{S_{MFK}}{S_{MHE}}=\left(\dfrac{MF}{ME}\right)^2=\dfrac{9}{25}\)
\(\Rightarrow\dfrac{MF}{ME}=\dfrac{3}{5}\)
Từ K kẻ KO vuông góc EF
\(\Rightarrow\dfrac{S_{EMK}}{S_{MFK}}=\dfrac{\dfrac{1}{2}KO.ME}{\dfrac{1}{2}KO.MF}=\dfrac{ME}{MF}=\dfrac{5}{3}\)
\(\Rightarrow S_{EMK}=\dfrac{5}{3}.9=15\left(cm^2\right)\)
\(\Rightarrow S_{ABCD}=2.9+2.25+4.15=128\left(cm^2\right)\)
1 . Cho tam giác ABC cân tại A. Gọi D, E, P lần lượt là trung điểm của AB, AC
và BC. Trên tia đối của tia CE lấy điểm M sao cho CM = CE. Chứng minh:
a) Tứ giác BDEP là hình bình hành.
b) Tứ giác CDPM là hình bình hành.
c) P là trọng tâm của tam giác BDM
2 .
Cho tam giác nhọn ABC. Gọi điểm M là trung điểm của đoạn thẳng BC. Từ điểm M vẽ các đường thẳng song song với AC và AB, các đường thẳng song song đó lần lượt cắt AB và AC tại D và E.
1) Chứng minh tứi giác ADME là hình bình hành.
2) Tam giác ABC cần thêm điều kiện gì thì tứ giác ADME là hình chữ nhật, hình vuông?
3) Chứng minh diện tích của tam giác ADE = \(\frac{1}{4}\) diện tích tam giác ABC.
Bài 1: cho hình chữ nhật ABCD. E là điểm bất kì trên đường chéo AC. đường thẳng qua E, song song với AD cắtt AB, DC lần lượt tại F, G. đường thẳng qua E, song song với AB cắt AD, BC lần lượt tại H, K. chứng minh 2 hình chữ nhật EFBK và EGDH có cùng diện tích
Cho hình bình hành ABCD. Gọi O là giao điểm hai đường thẳng AC và BD. Qua điểm O vẽ đường thẳng song song với AB cắt hai cạnh AD, BC lần lượt tại M,N. Trên AB, CD lần lượt lấy các điểm P, Q sap cho AP=CQ. Gọi I là giao điểm AC và PQ. Chứng minh:
a, Các tứ giác AMNB, APCQ là hình bình hành
b) Ba điểm M, N, I thẳng hàng
c)Ba đường thẳng AC, MN, PQ đồng quy
(mọi người có thể vẽ hình không cũng đc ạ, ko cần phải cminh ạ, mình cảm ơn)
a/
Ta có
MN//AB (gt)
AD//BC=> AM//BN
=> AMNB là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)
Ta có
AB//CD => AP//CQ mà AP = CQ (gt) => APCQ là hbh (Tứ giác có cặp cạnh đối // và = nhau là hbh)
b/
Xét hbh ABCD
OA=OC (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)
Xét hbh APCQ có
IA=IC (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)
=> \(I\equiv O\) (đều là trung điểm AC) => M; N; I thẳng hàng
c/ Do \(I\equiv O\) (cmt) => AC; MN; PQ đồng quy tại O
Cho hình bình hành ABCD. Gọi M,N lần lượt là hai điểm trên cạnh BC , CD . Đường chéo BD cắt AM,AN theo thứ tự ở E và F . Các đường thẳng qua E song song với BC , qua F song song với AD cắt nhau ở I
a) chứng minh Diên tích tam giác AEF = Diện tích tam giác IDB
b) Giả sử Diện tích tam giác AEF = Diện tích tứ giác EMNF,chứng minh 3 điểm M,I,N thẳng hàng