Ôn tập: Tam giác đồng dạng

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Minz Ank

Cho hình bình hành ABCD (góc A nhỏ hớn 90 độ), lấy điểm M trên BD sao cho MB < MD. Đường thẳng qua M và song song với AB cắt AD và BC lần lượt tại E và F. Đường thẳng qua M song song với AD cắt AB và AC lần lượt tại K và H.

1. Chứng minh: các đường thẳng EK, HF, BD đồng quy

2. Cho SMKF = 9 cm2 ; SMEH = 25 cm2 . Tính SABCD.

Nguyễn Việt Lâm
10 tháng 3 2023 lúc 15:52

Đề sai rồi, em kiểm tra lại, EK, HF và BD ko hề đồng quy

Minz Ank
10 tháng 3 2023 lúc 21:32

Cho hình bình hành ABCD, lấy điểm M trên BD sao cho MB < MD. Đường thẳng qua M và song song với AB cắt AD và BC lần lượt tại E và F. Đường thẳng qua M song song với AD cắt AB và AC lần lượt tại K và H.

1. Chứng minh: các đường thẳng EK, HF, BD đồng quy

2. Cho SMKF = 9 cm2 ; SMEH = 25 cm2 . Tính SABCD.

 
Nguyễn Việt Lâm
10 tháng 3 2023 lúc 22:30

Đặt tên các điểm như hình vẽ.

Các tứ giác AEMK, BKMF, CFMH, DHME đều là hình bình hành (hai căpj cạnh đối song song theo giả thiết)

\(\Rightarrow MK=BF\) ; \(EF=CD\)\(MH=BC\)

Áp dụng định lý Talet cho tam giác BCD: \(\dfrac{BF}{BC}=\dfrac{MF}{CD}\) \(\Rightarrow\dfrac{MK}{MH}=\dfrac{MF}{EF}\)

\(\Rightarrow KF||EH\) (Talet đảo)

\(\Rightarrow KFHE\) là hình thang

Gọi G là giao điểm EK và HF, theo bổ đề hình thang do M là giao điểm 2 đường chéo hình thang \(\Rightarrow MG\) đi qua trung điểm I và J của 2 đáy KF và EH hay G, M, I, J thẳng hàng

Mặt khác BKMF và DEMH là hbh \(\Rightarrow B;I;M\) và \(D;J;M\) thẳng hàng \(\Rightarrow B;D;I;J;M\) thẳng hàng (do \(I;J;M\) thẳng hàng)

 \(\Rightarrow B;D;G\) thẳng hàng

Hay EK, HF, BD đồng quy tại G

b.

Từ E và H hạ vuông góc xuống KF tại L và N

\(\Rightarrow ELNH\) là hình chữ nhật (2 cặp cạnh đối song song và 1 góc vuông) \(\Rightarrow EL=HN\)

\(S_{EFK}=\dfrac{1}{2}EL.KF\) ; \(S_{HFK}=\dfrac{1}{2}HN.KF\)

\(\Rightarrow S_{EFK}=S_{HFK}\Rightarrow S_{EMK}+S_{MFK}=S_{HFM}+S_{MFK}\)

\(\Rightarrow S_{EMK}=S_{HMF}\Rightarrow\dfrac{1}{2}S_{AEMK}=\dfrac{1}{2}S_{SFMH}\Rightarrow S_{AEMK}=S_{SFMH}\)

Hai tam giác MKF và MEH đồng dạng (g.g) \(\Rightarrow\dfrac{S_{MFK}}{S_{MHE}}=\left(\dfrac{MF}{ME}\right)^2=\dfrac{9}{25}\)

\(\Rightarrow\dfrac{MF}{ME}=\dfrac{3}{5}\)

Từ K kẻ KO vuông góc EF

\(\Rightarrow\dfrac{S_{EMK}}{S_{MFK}}=\dfrac{\dfrac{1}{2}KO.ME}{\dfrac{1}{2}KO.MF}=\dfrac{ME}{MF}=\dfrac{5}{3}\)

\(\Rightarrow S_{EMK}=\dfrac{5}{3}.9=15\left(cm^2\right)\)

\(\Rightarrow S_{ABCD}=2.9+2.25+4.15=128\left(cm^2\right)\)

Nguyễn Việt Lâm
10 tháng 3 2023 lúc 22:31

loading...


Các câu hỏi tương tự
Hoàng MinhhAnh
Xem chi tiết
Miwasura
Xem chi tiết
Lê Đạt Thành Nguyễn
Xem chi tiết
Trần Đình Phúc
Xem chi tiết
Tùng
Xem chi tiết
phamthiminhanh
Xem chi tiết
Hoàng Hải Long
Xem chi tiết
ngọc trang
Xem chi tiết
Nguyễn Phương Anh
Xem chi tiết