Cho hình bình hành ABCD (góc A nhỏ hớn 90 độ), lấy điểm M trên BD sao cho MB < MD. Đường thẳng qua M và song song với AB cắt AD và BC lần lượt tại E và F. Đường thẳng qua M song song với AD cắt AB và AC lần lượt tại K và H.
1. Chứng minh: các đường thẳng EK, HF, BD đồng quy
2. Cho SMKF = 9 cm2 ; SMEH = 25 cm2 . Tính SABCD.
Cho tam giác ABC (AB>AC). a, Kẻ đường cao BM , CN của tam giác ABC.CMR tam giác ABM đòng dạng tam giác ACN ; đọ lớn 2 góc AMN và ABC bằng nhau
*b, Trên cạnhAB lấy điểm K sao cho BK=AC . Gọi E là trung điểm BC , F là trung điểm AK .CMR EF song song với tia phân giác Ax của góc BAC
cho tam giác ABC vuông tại A (AB<AC) có đường cao AH (H thuộc BC). Lấy điểm D sao cho H là trung điểm của đoạn thẳng BD. Chứng minh tam giác ABC đồng dạng với tam giác HBA. Qua điểm C kẻ đường thẳng vuông góc với tia AD tại E. Chứng minh AH.CD=CE.AD. Chứng minh tam giác HDE đồng dạng tam giác ADC và BD.AC=2AD.HE. Tia AH cắt tia CE tại F chứng minh AF^2=2BF.AE
Cho hình bình hành ABCD. Qua A kẻ một đường thẳng bất kì cắt BD, DC, BC lần lượt tại E, F, G.
a. Chứng minh rằng: tam giác DAE đồng dạng tam giác BFE
b. AB . AG = . AF . DG
c. AE^2 = EF . EG
d. Tích BF . DG không đổi
e. Cho AB = 10 cm, AD = 9 cm, DG = 6 cm. Tính độ dài BG và CM và 9 lần dt tam giác BEA = 25 lần dt tam giác DEG
Giúp mình vs *-*
cho tam giác abc có ab =6, ac=9 trên ab lấy điểm d sao cho ad = 2 , trên ac lấy điểm e sao cho ae = 3 , chứng minh tam giác ade đồng dạng với tam giác acb , chứng minh tam giác abe đồng dạng với tam giác acd , gọi h là giao điểm của be và cd chứng minh bh.be=ch.cd
Cho tam giác ABC nhọn. M, N lần lượt là trung điểm của BC và AC. Các đường trung trực của BC và AC cắt nhau tại O. Qua A kẻ đường thẳng song song với OM, qua B kẻ đường thẳng song song với ON, cúng cát nhau tại H. Gọi G là trọng tâm của tam giác ABC
a) Tam giác AHB đồng dạng với tam giác nào? Chứng minh
b) Chúng minh: tam giác HAG đồng dạng với tam giác OMG
c) Chứng minh H, G, O thẳng hàng
Cho tam giác ABC vuông tại A ( AC > AB ), đường cao AH. Trên tia HC lấy điểm D sao cho HD = AH. Qua D kẻ đường thẳng vuông góc với BC, cắt cạnh AC tại E.
a) Chứng minh tam giác ABC đồng dạng với tam giác HAC
b) Chứng minh EC . AC = DC. BC
c) Chứng minh tam giác BEC = tam giác ADC và tam giác ABE vuông cân
Cho tam giác ABC vuông tại A (AB < AC), với đường cao AD.
a) Chứng minh tam giác ABC đồng dạng với tam giác DBA .
b) Trên đoạn AD lấy điểm E, gọi G là hình chiếu của C trên BE. Chứng minh BD.BC = BE.BG.
c) Trên đoạn CE lấy điểm F sao cho BF = BA. Chứng minh góc BEF bằng góc BFG
Bài 2 (4,5 điểm) Cho tam giác ABC nhọn, AD là đường phân giác. Trên tia đối của tia DA
lấy điểm E sao cho góc AEB = góc ACB.
a) Biết AB = 4cm, AC = 6cm, BC = 8cm. Tính BD, CD.
b) Chứng minh: tam giác DEB đồng dạng với tam giác ADC và tam giác ABE đồng
dạng với tam giác ADC.
c) Chứng minh: AC. AB = AD. AE và AD' = AB.AC- DB.DC.
d) Chứng minh ABE+ACE = 180°.