Tìm số phức z thỏa mãn z - 3 = z - 1 và x + 2 z ¯ - i là số thực
A. z=2
B. z=-2+2i
C. z=2-2i
D. Không có z
Số phức z thỏa mãn z = 5 và số phức w = ( 1 + i ) z ¯ Tìm w
A. 10
B. 2 + 5
C. 5
D. 2 5
Đáp án A
Phương pháp: Cho z 1 , z 2 là hai số phức bất kì, khi đó
Cách giải: Ta có:
Cho số phức z thỏa mãn |z| = 5 và số phức w = ( 1 + i ) z Tìm |w|
A. 10
B. 2 + 5
C. 5
D. 2 5
Đáp án A
Phương pháp: Cho z1, z2 là hai số phức bất kì, khi đó | z1.z2 | = |z1|.|z2|
Cách giải: Ta có:
Cho số phức z thỏa mãn z ¯ = 3 - 2 i 1 + i . Tìm phần thực và phần ảo của số phức z.
A. Phần thực bằng 1 2 , phần ảo bằng 5 2 .
B. Phần thực bằng 1 2 , phần ảo bằng - 5 2 .
C. Phần thực bằng 1 2 , phần ảo bằng - 5 2 i.
D. Phần thực bằng 1 2 , phần ảo bằng 5 2 i .
Cho số phức z thỏa mãn z ¯ = 3 - 2 i 1 + i . Tìm phần thực và phần ảo của số phức z.
A. Phần thực bằng 1 2 , phần ảo bằng 5 2
B. Phần thực bằng 1 2 , phần ảo bằng - 5 2 .
C. Phần thực bằng 1 2 , phần ảo bằng - 5 2 i .
D. Phần thực bằng 1 2 , phần ảo bằng 5 2 i .
Cho số phức z thỏa mãn z ¯ = 3 − 2 i 1 + i . Tìm phần thực và phần ảo của số phức z.
A. Phần thực bằng 1 2 , phần ảo bằng 5 2
B. Phần thực bằng 1 2 , phần ảo bằng 5 2 i
C. Phần thực bằng 1 2 , phần ảo bằng - 5 2
D. Phần thực bằng 1 2 , phần ảo bằng - 5 2 i
Số phức z thỏa mãn ( 2 + 3 i ) z + 1 - i z = 3 + 5 i Tìm môđun của số phức z.
A. 11
C. 9
Tìm số phức z thỏa mãn |z-2|=|z| và (z+1)( z ¯ - i ) là số thực
A. z = 1 + 2 i
B. z = - 1 - 2 i
C. z = 2 - i
D. z = 1 - 2 i
Tìm số phức z thỏa mãn |z-2| = |z| và |z+1|( z ¯ -i) là số thực.
A. z = 1 - 2i
B. z = -1 - 2i
C. z = 2 - i
D. z = 1 + 2i
Đáp án A
Đặt z = a + bi;
Mặt khác là số thực, suy ra
Tìm số phức z thỏa mãn z - 2 = z và ( z + 1 ) ( z ¯ - i ) là số thực
A. z=1+2i
B. z=-1-2i
C. z=2-i
D. z=1-2i
Đáp án D
Phương pháp.
Gọi . Sử dụng giả thiết để tìm a, bsuy ra giá trị của z.
Lời giải chi tiết.
Giả sử .Khi đó ta có
Vậy z=a+bi=1-2i
Sai lầm.Một số học sinh có thể nhớ nhầm i 2 = - 1 thành i 2 = 1 do đó quá trình tính toán kết quả sẽ bị sai.