Cho (P): y = x 2 + 2 x - 3 và d: y = m(x - 4) - 2. Tìm m để d cắt (P) tại hai điểm A x 1 ; y 1 ; B x 2 ; y 2 sao cho biểu thức P = 2 x 1 2 + x 2 2 + 9 x 1 x 2 + 2014 đạt giá trị nhỏ nhất
1
a. Cho đt (d) y=ax+b . Tìm a,b để đt đi qua điểm A(-1:3) và song song vs đt (d,)y=5x+3
b. Cho pt ax^2+3(a+1)x+2a+4=0(x là ẩn số). Tìm a để pt đã cho có hai No phân biệt x1,x2 thõa mãn x1^2+x2^2=4
2 . Cho parabol (P) y=1/2 x^2 và đt d y=mx-m+2(với m là tham số)
a) tìm m để d cắt p tại điểm có hoành độ x=4
b) CMR với mọi giá trị của m , d luôn cắt p tại hai điểm phân biệt
Bài 1: Cho y=(4m+3)x-m+3 (d)
y=(4m-1)x+3m-1 (d1)
a,Tìm m để (d) cắt (d1) tại 1 điểm trên trục tung
b,Tìm m để (d) cắt (d1) tại 1 điểm trên trục hoành
c,Tìm m để (d) và (d1) cắt nhau tại 1 điểm Bài 2: Cho y=(m-1)x+2m-5 (d2) (m khác 1)
a,Tìm m để phương trình đường thẳng (d2) song song với đường thẳng (d3) y=3x+1
b,Tìm m để phương trình đường thẳng (d2) đi qua M(2;1)
c,Vẽ đồ thị của đường thẳng (d2) với giá trị của m tìm được ở câu b. Tính góc tạo bởi đường thẳng vẽ được với trục hoành
cho hàm số y= (m-2)x + n (d') trong đó m,n là tham số
a) Tìm m,n để (d') đi qua 2 điểm A(1: -2) ; B(3: -4)
b) Tìm m,n để (d') cắt trục tung tại điểm M có tung độ y = 1 - √2 và cắt trục hoành tại điểm N có hoành độ x = 2 + √2
c) Tìm m để: (d') vuông góc với đường thẳng có phương trình: x - 2y = 3(d') song song với đường thẳng có phương trình: 3x + 2y = 1(d') trùng với đường thẳng có phương trình: y - 2x + 3 = 0
cho hàm số y=x2 có đồ thị là (P) và (d) y=x+m
1) tìm m để (P) cắt (d) tại hai điểm phân biệt A và B
2) tìm m để khoảng cách giữa hai điểm A và B là \(3\sqrt{2}\)
2. Trong mặt phẳng tọa độ Oxy cho Parabol (P): y=X’ và đường thẳng (d):
y=3x+m² -1
a) Tìm m để đường thẳng (d) đi qua điểm A(-1: 5).
b) Tìm m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt có hoành độ x,,, thỏa
mãn |x|+2|x|=3.
Cho Parabol (P): \(y=x^2\) và đường thẳng (d):\(y=\left(m+4\right)x-4m\)
a,Tìm m để đường thẳng (d) cắt (P) tại 2 điểm phân biệt
b,Tìm tọa độ giao điểm của (d) và (P) khi m=-2
a, Hoành độ giao điểm tm pt
\(x^2-\left(m+4\right)x+4m=0\)
\(\Delta=\left(m+4\right)^2-4.4m=m^2+8m+16-16m=\left(m-4\right)^2\)
Để pt có 2 nghiệm pb hay (P) cắt (d) tại 2 điểm pb khi m khác 4
b, Thay m = -2 vào ta được
\(x^2-2x-8=0\Leftrightarrow\left(x-1\right)^2-9=0\Leftrightarrow\left(x-4\right)\left(x+2\right)=0\Leftrightarrow x=4;x=-2\)
Với x = 4 => y = 16 ; x = -2 => y = 4
Vậy với m = -2 thì (P) cắt (d) tại A(4;16) ; B(-2;4)
Bài 1: Cho (P): y=\(\frac{1}{2}\)x2 và đường thẳng (d): y=ã+b
a. Tìm a và b để đường thẳng (d) đi qua điểm A(-1;0) và tiếp xúc với (P)
b. Tìm tọa độ tiếp điểm của (d) và (P)
Bài 2: Cho (P) y= x2 và đường thẳng (d) y=2x+m
a. Vẽ (P)
b. Tìm m để (P) tiếp xúc với (d). tìm tọa độ tiếp điểm của (d) và (P)
c. Với giá trị nào của m thì (d) cắt (P) tại hai điểm nằm về cùng phía đối với trục tung?
d. Với giá trị nào của m thì (d) cắt (P) tịa hai điểm có hoành độ cùng âm?
Bài 3: Cho (P) y= -\(\frac{x^2}{4}\)và (d)y=x+m
a. Vẽ (P)
b. tìm m để (P) và (d) cắt nhau tại 2 điểm phân biệt Avà B
c. Viết phương trình đường thẳng (d') song song với đường thẳng (d) và cắt (P) tại điểm, có tung độ bằng -4
Bài 1:đường thẳng (d) là y= ax+b
NHA MỌI NGƯỜI :>>
Bài 1: đường thẳng (d) là y=ax+b
NHA MỌI NGƯỜI :>>
Học tốt phương trình bậc 2 - hệ thức viete bạn sẽ lm đ.c :)
GIÚP VỚI!!!!!!
a) cho hai đường thẳng (d): y= kx-4 và (d'): y=2x-1
tìm k để (d) và (d') cắt nhau tại điểm M có hoành bằng -2
b) cho ba đường thẳng (d1) : y=3x ; (d2): y=x+2 và (d3): y= (m-3)x +2m+1. Tìm m để ba đường thẳng trên đồng quy.
a) x =-2 d' => y =2(-2) -1 =-5 => M(-2;-5)
d cắt d' tại M =>k khác 2 và M thuộc (d) => k.(-2) -4 =-5 => -2k = -1 => k =1/2 (TM)
b) + Phương trình hoành độ giao điểm của d1 và d2 là:
3x =x+2 => x =1
với x =1 (d1) => y =3 => d1 cắt d2 tại N(1;3)
Để 3 đường thẳng đồng quy thì d3 qua N => (m-3).1 +2m +1 =3 => m -3 +2m +1 =3 => 3m =5 => m =5/3
1) Giải hệ phương trình $\left\{\begin{array}{l}3 x+4 y=6 \\ 2 x-y=-7\end{array}\right.$
2) Trong mặt phẳng tọa độ $O xy$, cho đường thẳng $d: y=5 x+m$ ($m$ là tham số) và parabol $(P): y=x^{2}$.
a) Tìm giá trị của tham số $m$ để $d$ cắt $(P)$ tại hai điểm phân biệt.
b) Tìm tọa độ giao điểm của đường thẳng $d$ và $(P)$ khi $m=-4$.
1/
\(\hept{\begin{cases}3x+4y=6\left(1\right)\\2x-y=-7\left(2\right)\end{cases}}\)
\(\left(2\right)\Leftrightarrow8x-4y=-28\left(3\right)\)
Cộng 2 vế của (1) với (3) \(\Rightarrow11x=-22\Rightarrow x=-2\) Thay vào (2) \(\Rightarrow2.\left(-2\right)-y=-7\Rightarrow y=3\)
2/
a/ d cắt p tại 2 điểm phân biệt khi \(x^2=5x+m\Leftrightarrow x^2-5x-m=0\) có 2 nghiệm phân biệt
Điều kiện \(\Delta=25+4m>0\Leftrightarrow m>-\frac{25}{4}\)
b/ Khi m=-4
\(x^2-5x+4=0\Rightarrow x_1=1;x_2=4\)
Khi m=-4 d cắt p tại 2 điểm phân biệt A(1;0) và B(4;0)