CMR:
a)1/2-1/4+1/8-1/16+1/32-1/64<1/3
b)1/3 - 2/3^2 + 3/3^3 - 4/3^4 +...+ 99/3^99 -100/3^100 < 3/16
CMR:a,\(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)<1/3
\(b.\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}
a)Đặt A= \(\frac{1}{2}\) - \(\frac{1}{4}\) + \(\frac{1}{8}\) - \(\frac{1}{16}\) + \(\frac{1}{32}\) - \(\frac{1}{64}\) => A=\(\frac{1}{2^1}\) - \(\frac{1}{2^2}\) + \(\frac{1}{2^3}\) - \(\frac{1}{2^4}\) + \(\frac{1}{2^5}\) - \(\frac{1}{2^6}\)
=> 2A= 1-\(\frac{1}{2^1}\) + \(\frac{1}{2^2}\) - \(\frac{1}{2^3}\) + \(\frac{1}{2^4}\) - \(\frac{1}{2^5}\)
=> 3A= 1- \(\frac{1}{2^6}\) <1 => A<\(\frac{1}{3}\) => đpcm.
b) Đặt B=\(\frac{1}{3}\) - \(\frac{2}{3^2}\) + \(\frac{3}{3^3}\) - \(\frac{4}{3^4}\) +..+ \(\frac{99}{3^{99}}\) - \(\frac{100}{3^{100}}\)
=> 3B=1-\(\frac{2}{3}\) + \(\frac{3}{3^2}\) - \(\frac{4}{3^3}\) +...+\(\frac{99}{3^{98}}\) - \(\frac{100}{3^{99}}\)
=> 4B= 1-\(\frac{1}{3}\) + \(\frac{1}{3^2}\) - \(\frac{1}{3^3}\) +...+\(\frac{1}{3^{99}}\) - \(\frac{100}{3^{99}}\) < 1-\(\frac{1}{3}\) + \(\frac{1}{3^2}\) - \(\frac{1}{3^3}\) +...+\(\frac{1}{3^{99}}\) (1)
Đặt B= 1-\(\frac{1}{3}\) + \(\frac{1}{3^2}\) - \(\frac{1}{3^3}\) +...+\(\frac{1}{3^{99}}\)
=> 3B= 3-1+\(\frac{1}{3}\) - \(\frac{1}{3^2}\) + \(\frac{1}{3^3}\) - \(\frac{1}{3^4}\) +...+ \(\frac{1}{3^{98}}\)
=> 4B= 3-\(\frac{1}{3^{99}}\) <3 => B<\(\frac{3}{4}\) (2)
=> 4A<B<\(\frac{3}{4}\) => A<\(\frac{3}{16}\) => đpcm.
1+1+2+2+4+4+8+8+16+16+32+32+64+64=?
bk nha@ >_0
1+1+2+2+4+4+8+8+16+16+32+32+64+64=254
1/2 + 1/4+1/8+1/16+1/32+1/64
mọi người giúp minh giải câu hỏi này đi ạ
1/2+1/4+1/8+1/16+1/32+1/64
= 2 x (1/2+1/4+1/8+1/16+1/32+1/64)
= 1 + 1/2+1/4+1/8+1/16+1/32
=> 2A - A = (1+1/2+1/4+1/8+1/16+1/32) - (1/2+1/4+1/8+1/16+1/32+1/64)
=> A = 1 - 1/64
= 63/64
\(1-\dfrac{1}{2}=\dfrac{1}{2}\)
\(\dfrac{1}{2}-\dfrac{1}{4}=\dfrac{1}{4}\)
Vậy A = \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{32}+\dfrac{1}{32}-\dfrac{1}{64}\)
=\(1-\dfrac{1}{64}=\dfrac{63}{64}\)
chứng minh 1/2 - 1/4 + 1/8 - 1/16 + 1/32 - 1/64 < 1/3
Chứng minh 1/2 + 1/4 + 1/8 + 1/16+ 1/32 + 1/64 < 1/3
Chứng minh: ( 2x + 3y ) Chia hết cho 17 ki và chỉ khi ( 9x + 5y) chia hết cho 17
1 /2 -1 /4 + 1 /8-1 /16 + 1 /32-1 /64 < 1 /3
Cách 1:21/64 < 1/3
Cách 2:21/64 < 0.(3)
Đúng
1 /2 + 1 /4 + 1 /8 + 1 /16 + 1 /32 + 1 /64 < 1 /3
Cách 2:63/64 < 0.(3)
Ko đúng
Câu 3 mình ko biết
a)cho \(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)là A
ta có:A=\(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)
2A=\(\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\right)2\)
2A=\(1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\frac{1}{32}\)
2A+A=\(\left(1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\frac{1}{32}\right)+\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\right)\)
3A=\(1-\frac{1}{64}\Rightarrow3A=\frac{63}{64}\Rightarrow A=\frac{21}{64}< \frac{1}{3}\)
vậy \(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}< \frac{1}{3}\)
b) sai đề (\(\frac{63}{64}< \frac{1}{3}\)hay sao)
c)sai nối (nếu x=y=3 thì 2x+3y=17 chia hết nhưng 9x+5y=42 ko chia hết)
B=1/2+1/4+1/8+1/16+1/32+1/64
\(2xB=1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}\)
\(B=2xB-B=1-\dfrac{1}{64}=\dfrac{63}{64}\)
1+1
2+2
4+4
8+8
16+16
32+32
64+64
128+128
1+1=2
2+2=4
4+4=8
8+8=16
16+16=32
32+32=64
64+64=128
128+128=256
tk m nhé
1/2+1/4+1/8+1/16+1/32+1/64
1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64
= 1 – 1/2 + 1/2 - 1/4 + 1/4 - 1/8 + 1/8 - 1/16 + 1/16 - 1/32 + 1/32 - 1/64
= 1 – 1/64
= 63/64
Bên trên mik trình bày như vậy cho bạn dễ nhìn nha!
1/2+1/4+1/8+1/16+1/32+1/64 = ?
1/2-1/4-1/8-1/16-1/32-1/64=..
\(A=\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-\frac{1}{16}-\frac{1}{32}-\frac{1}{64}\)
\(\Leftrightarrow\)\(2A=1-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-\frac{1}{16}-\frac{1}{32}\)
\(\Leftrightarrow\)\(2A-A=\left(1-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-\frac{1}{16}-\frac{1}{32}\right)\)\(-\left(\frac{1}{2}-\frac{1}{4}-\frac{1}{6}-\frac{1}{8}-\frac{1}{16}-\frac{1}{32}-\frac{1}{64}\right)\)
\(\Leftrightarrow\)\(A=1-\frac{1}{64}\)\(=\frac{63}{64}\)
1/2 - 1/4 - 1/8 - 1/16 - 1/32 - 1/64
= 32/64 - 16/64 - 8/64 - 4/64 - 2/64 - 1/64
= 1/64 .
^ - ^ . Mình không chăc chắn lắm đâu !
= 1- 1/2+1/2-1/4+1/4-1/8+1/8-1/16+1/16-1/32+1/32-1/64
= 1 + ( 1/2 - 1/2 ) + ( 1/4 - 1/4 ) + .... + ( 1/32 - 1/32 ) -1/64
= 1 + 0 + 0 + 0 + 0 + 0 -1/64
= 1 - 1/64 = 63/64
1/2 + 1/4 + 1/8 + .......... + 1/16 +1/32 + 1/64
1/2+1/4+1/8+1/16+1/32+1/64=63/64
nhớ k mik nha
Gọi A= 1/2 + 1/4 + 1/8 + .......+ 1/16 +1/32 + 1/64
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}\frac{1}{2^6}\)
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^5}\)
\(2A-A=A=1-\frac{1}{2^5}=1-\frac{1}{64}=\frac{63}{64}\)