Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Minh Nguyệt
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 5 2021 lúc 22:27

Gặp những bài cần tính toán thế này làm biếng lắm, dựng hình thì dễ chứ tính thì chả muốn tính chút xíu nào.

Trong mp đáy, kéo dài AD và BC cắt nhau tại E \(\Rightarrow D\) là trung điểm AE (đường trung bình) \(\Rightarrow AE=AB=2a\)

Ta có: \(\left\{{}\begin{matrix}AD\perp AB\\SA\perp\left(ABCD\right)\Rightarrow SA\perp AD\end{matrix}\right.\) \(\Rightarrow AD\perp\left(SAB\right)\Rightarrow AD\perp SB\)

\(\Rightarrow AD\in\left(\alpha\right)\)

Trong mp (SAB), kẻ \(AM\perp SB\Rightarrow M\in\left(\alpha\right)\)

Dễ dàng chứng minh tam giác ACB vuông cân tại C (Pitago đảo) \(\Rightarrow BC\perp\left(SAC\right)\)

Trong mp (SAC), kẻ \(AN\perp SC\Rightarrow AN\perp\left(SBC\right)\Rightarrow AN\perp SB\Rightarrow N\in\left(\alpha\right)\)

\(\Rightarrow\) Thiết diện là tứ giác AMND

\(SB=SE=\sqrt{SA^2+AB^2}=a\sqrt{5}\) ; \(AM=\dfrac{SA.AB}{\sqrt{SA^2+AB^2}}=\dfrac{2a\sqrt{5}}{5}\)

\(AC=a\sqrt{2}\Rightarrow SC=\sqrt{AC^2+SA^2}=a\sqrt{3}\)

\(CN=\dfrac{AC^2}{SC}=\dfrac{2a\sqrt{3}}{3}\) ; \(EC=BC=a\sqrt{2}\Rightarrow EN=\sqrt{EC^2+CN^2}=\dfrac{a\sqrt{30}}{3}\)

\(DE=AD=a\)

\(S_{AME}=\dfrac{1}{2}AM.AE=...\) 

\(S_{DNE}=\dfrac{1}{2}DE.EN.sin\widehat{DEN}=\dfrac{1}{2}DE.EN.\dfrac{AM}{\sqrt{AM^2+AE^2}}=...\)

\(\Rightarrow S_{AMND}=S_{AME}-S_{DNE}=...\) 

Nguyễn Việt Lâm
6 tháng 5 2021 lúc 0:04

Trong trường hợp vuông góc SC:

Vẫn nối AD cắt BC tại E rồi chứng minh \(BC\perp\left(SAC\right)\)

Sau đó từ A kẻ \(AN\perp SC\) 

Trong mp (SBE), qua N kẻ đường thẳng song song BE lần lượt cắt SB tại M và cắt SE tại I

Trong mp (SAD), nối AI cắt SD tại P

Tứ giác AMNP là thiết diện cần tìm

Như câu trước, tính được \(CN=\dfrac{2a\sqrt{3}}{3}\) ; \(SC=a\sqrt{3}\Rightarrow SN=\dfrac{a\sqrt{3}}{3}\)

Talet: \(\dfrac{SM}{SB}=\dfrac{SI}{SE}=\dfrac{SN}{SC}=\dfrac{IM}{EB}=\dfrac{1}{3}\Rightarrow SM=SI=\dfrac{1}{3}SB=\dfrac{a\sqrt{5}}{3};IM=\dfrac{EB}{3}=\dfrac{2a\sqrt{2}}{3}\)

\(AN=\dfrac{SA.AC}{\sqrt{SA^2+AC^2}}=\dfrac{a\sqrt{6}}{3}\) \(\Rightarrow AI=AM=\sqrt{AN^2+\left(\dfrac{IM}{2}\right)^2}=\dfrac{2a\sqrt{2}}{3}\)

\(\Rightarrow\Delta AIM\) đều

Trong tam giác SAE, đặt \(\overrightarrow{AP}=x\overrightarrow{AI}\)

\(\overrightarrow{SP}=\overrightarrow{SA}+\overrightarrow{AP}=\overrightarrow{SA}+x.\overrightarrow{AI}=\overrightarrow{SA}+x\left(\overrightarrow{AS}+\overrightarrow{SI}\right)=\left(1-x\right)\overrightarrow{SA}+\dfrac{x}{3}\overrightarrow{SE}\)

D là trung điểm AE \(\Rightarrow\overrightarrow{SD}=\dfrac{1}{2}\overrightarrow{SA}+\dfrac{1}{2}\overrightarrow{SE}\)

Mà S; P; D thẳng hàng \(\Rightarrow\dfrac{1-x}{\dfrac{1}{2}}=\dfrac{\dfrac{x}{3}}{\dfrac{1}{2}}\Leftrightarrow1-x=\dfrac{x}{3}\Rightarrow x=\dfrac{3}{4}\)

\(\Rightarrow IP=\dfrac{1}{4}AI=\dfrac{a\sqrt{2}}{6}\)

\(S_{AMNP}=S_{AIM}-S_{IPN}=\dfrac{1}{2}AN.IM-\dfrac{1}{2}IP.IN.sin\widehat{PIN}\)

Với chú ý rằng \(IN=\dfrac{1}{2}IM=...\) và \(\widehat{PIN}=60^0\) do tam giác AIM đều theo cmt

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 9 2019 lúc 15:05

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 10 2019 lúc 18:10

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 4 2018 lúc 6:25

Đáp án A.

Gọi N, Q lần lượt là trung điểm của AB, CD ⇒ M N ⊥ A B M Q ⊥ A B .  

Qua N kẻ đường thẳng song song với BC, cắt SC tại P.

Suy ra thiết diện của mặt phẳng α  và hình chóp là MNPQ.

Vì MQ là đường trung bình của hình tháng ABCD ⇒ M Q = 3 a 2 .

MN là đường trung bình của tam giác SAB ⇒ M N = S A 2 = a . 

NP là đường trung bình của tam giác SBC ⇒ N P = B C 2 = a 2 . 

Vậy diện tích hình thang MNPQ là S M N P Q = M N . N P + M Q 2 = a 2 a 2 + 3 a 2 = a 2 .

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 1 2019 lúc 16:13

07 12A0 - Trần Đức Cơ
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 8 2017 lúc 8:16

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 7 2019 lúc 4:55

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

⇒ (SCD) ⊥ (SAD)

Gọi I là trung điểm của đoạn AB. Ta có AICD là hình vuông và IBCD là hình bình hành. Vì DI // CB và DI ⊥ CA nên AC ⊥ CB. Do đó CB ⊥ (SAC).

Vậy (SBC) ⊥ (SAC).

b) Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

c) Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vậy (α) là mặt phẳng chứa SD và vuông góc với mặt phẳng (SAC) chính là mặt phẳng (SDI). Do đó thiết diện của (α) với hình chóp S.ABCD là tam giác đều SDI có chiều dài mỗi cạnh bằng a√2. Gọi H là tâm hình vuông AICD ta có SH ⊥ DI và Giải sách bài tập Toán 11 | Giải sbt Toán 11 .

Tam giác SDI có diện tích:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 4 2019 lúc 16:09