Nếu khối trụ có đường kính đường tròn đáy bằng a và chiều cao bằng 2a thì có thể tích bằng
Nếu một hình trụ có đường kính đường tròn đáy và chiều cao cùng bằng a thì có thể tích bằng
Một khối trụ có bán kính đường tròn đáy và chiều cao cùng bằng a thì có thể tích bằng
Khối trụ có đường kính đáy và chiều cao cùng bằng 2a có thể tích bằng
Cho hình trụ có các đáy là 2 hình tròn tâm O và O', bán kính đáy bằng chiều cao vào bằng a. Trên đường tròn đáy tâm O lấy điểm A, trên đường tròn tâm O lấy điểm B sao cho AB=2a. Thể tích khối tứ diện OO'AB theo a là
A. V = 3 a 3 8
B. V = 3 a 3 4 .
C. V = 3 a 3 6 .
D. V = 3 a 3 12 .
Cho hình trụ có đáy là hai đường tròn tâm O và O’, bán kính đáy bằng chiều cao và bằng 2a. Trên đường tròn đáy có tâm O lấy điểm A, trên đường tròn tâm O’ lấy điểm B. Đặt α là góc giữa AB và đáy. Tính tan α khi thể tích khối tứ diện OO’AB đạt giá trị lớn nhất.
A. tan α = 2
B. tan α = 1 2
C. tan α = 1 2
D. tan α = 1
Chọn B.
Cách 1:
Cách 2:
Nhận xét: Nên thêm giả thiết AB chéo với OO’ để tứ diện OO’AB tồn tại.
Cho hình trụ có các đáy là hai hình tròn tâm O và O’, bán kính đáy bằng a, chiều cao bằng a 2 . Trên đường tròn đáy tâm O lấy điểm A, trên đường tròn đáy tâm O’ lấy điểm O' sao cho AB' = 2a. Tính thể tích của khối tứ diện OO′B′A.
A. a 3 3 2
B. a 3 2 12
C. a 3 2 6
D. a 3 6
Thể tích của khối trụ có chiều cao bằng 10 và bán kính đường tròn đáy bằng 4 là
Cho hình trụ có đáy là hai đường tròn tâm O và O’, bán kính đáy bằng chiều cao và bằng 2a. Trên đường tròn đáy có tâm O lấy điểm A, trên đường tròn tâm O’ lấy điểm B. Đặt α là góc giữa AB và đáy. Biết rằng thể tích khối tứ diện OO’AB đạt giá trị lớn nhất. Khẳng định nào sau đây đúng?
Khối trụ tròn xoay có đường cao với bán kính đáy bằng a thì thể tích bằng:
A . a 3
B . π a 3
C . 3 a 3
D . 1 3 π a 3