Cho số phức z thỏa: 2 z - 2 + 3 i = 2 i - 1 - 2 z . Tập hợp điểm biểu diễn cho số phức z là một đường thẳng có phương trình là:
A. 20x-16y-47=0
B. 20x+16y+47=0
C. 20x+32y-47=0
D. -20x+32y+47=0
Câu 1 : Cho số phức \(z\) thỏa mãn \(z\) + ( 2 - i )\(\overline{z}\) = 3 - 5i. Môđun của số phức w = \(z \) - i bằng bao nhiêu ?
Câu 2 : Cho số phức \(z\) = a + bi, (a,b ∈ R ) thỏa mãn ( 3 + 2i )\(z\) + ( 2 - i )2 = 4 + i. Tính P = a - b
Cho số phức z thỏa mãn điều kiện ( 3 + 2 i ) z + ( 2 - i ) 2 = 4 + i . Tìm phần ảo của số phức w = ( 1 + + z ) z ¯ .
A. -2
B. 0.
C. -1
D. 1
Cho số phức z thỏa mãn điều kiện ( 3 + 2 i ) z + ( 2 - i ) 2 = 4 + i . Tìm phần ảo của số phức w = ( 1 + z ) z ¯ .
Cho số phức z thỏa mãn z + ( 2 + i ) z ¯ = 3 + 5 i . Tính môđun của số phức z.
Cho số phức z thỏa mãn z - 1 - i = 1 , số phức w thỏa mãn w ¯ - 2 - 3 i = 2 . Tìm giá trị nhỏ nhất của z - w .
Cho số phức z thỏa mãn z − 1 − i = 1 , số phức w thỏa mãn w ¯ − 2 − 3 i = 2 . Tìm giá trị nhỏ nhất của z − w .
A. 17 + 3
B. 13 + 3
C. 13 - 3
D. 17 - 3
Cho số phức z thỏa mãn z - 1 - i = 1 , số phức w thỏa mãn w ¯ - 2 - 3 i = 2 . Tính giá trị nhỏ nhất của z - w .
A. 13 - 3
B. 17 - 3
C. 17 + 3
D. 13 + 3
Cho số phức z thỏa | z + 2 - i | | z ¯ + 1 - i | = 2 . Tìm | z | m i n
A. | z | m i n = -3 + 10
B. | z | m i n = -3 - 10
C. | z | m i n = 3 - 10
D. | z | m i n = 3 + 10
Đáp án C
Giả thiết
Đặt khi đó
=> Do đó tập hợp điểm biễu diễn z là đường tròn tâm I(0;-3), bán kính R =
10
Cho số phức z thỏa mãn z ¯ = ( 2 + i ) 2 ( 1 - 2 i ) . Khi đó tổng bình phương phần thực và phần ảo của số phức z là
A. 18
B. 27
C. 61
D. 72
Cho số phức z thỏa mãn z ( 2 - i ) + 13 i = 1 Tính môđun của số phức z