Giải hệ phương trình:
x2+5y24xy+6x-16y+12=0 và x+\(\sqrt{y-3}\) = 3
giải hệ phương trình \(\left\{{}\begin{matrix}x^3-12y^3+xy\left(16y-7x\right)=0\\\sqrt{x-2y}+\sqrt{x+2y}=2\end{matrix}\right.\)
\(x^3-7x^2y+16xy^2-12y^3=0\)
\(\Leftrightarrow\left(x-3y\right)\left(x-2y\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2y\\x=3y\end{matrix}\right.\)
Thế xuống pt dưới giải đơn giản
a) Giải bất phương trình:
\(\sqrt{x^2+2x}+\sqrt{x^2+3x}\) ≥ \(2x\)
b) Giải hệ phương trình
\(\left\{{}\begin{matrix}x^3+6x^2y+9xy^2+y^3=0\\\sqrt{x-y}+\sqrt{x+y}=2\end{matrix}\right.\)
a, ĐKXĐ : \(\left[{}\begin{matrix}x\le-3\\x\ge0\end{matrix}\right.\)
TH1 : \(x\le-3\) ( LĐ )
TH2 : \(x\ge0\)
BPT \(\Leftrightarrow x^2+2x+x^2+3x+2\sqrt{\left(x^2+2x\right)\left(x^2+3x\right)}\ge4x^2\)
\(\Leftrightarrow\sqrt{\left(x^2+2x\right)\left(x^2+3x\right)}\ge x^2-\dfrac{5}{2}x\)
\(\Leftrightarrow2\sqrt{\left(x+2\right)\left(x+3\right)}\ge2x-5\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< \dfrac{5}{2}\\x\ge-2\end{matrix}\right.\\\left\{{}\begin{matrix}x\ge\dfrac{5}{2}\\4x^2+20x+24\ge4x^2-20x+25\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}0\le x< \dfrac{5}{2}\\x\ge\dfrac{5}{2}\end{matrix}\right.\)
\(\Leftrightarrow x\ge0\)
Vậy \(S=R/\left(-3;0\right)\)
Giải hệ phương trình:
\(\hept{\begin{cases}y^3-12y-x^3+6x^2-16=0\\4y^2+2\sqrt{4-y^2}-5\sqrt{4x-x^2}+6=0\end{cases}}\)
Đề bài: Giải hệ phương trình:
\(\left\{{}\begin{matrix}y^3-12y-x^3+6x^2-16=0\left(1\right)\\4y^2+2\sqrt{4-y^2}-5\sqrt{4x-x^2}+6=0\left(2\right)\end{matrix}\right.\).
Giải:
ĐKXĐ: \(\left\{{}\begin{matrix}0\le x\le4\\-2\le y\le2\end{matrix}\right.\).
\(\left(1\right)\Leftrightarrow y^3-12y=\left(x-2\right)^3-12\left(x-2\right)\)
\(\Leftrightarrow\left(x-2-y\right)\left[\left(x-2\right)^2+\left(x-2\right)y+y^2-12\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=y+2\\x^2+xy+y^2-4x-2y-8=0\end{matrix}\right.\).
+) TH1: \(x=y+2\): Thay vào (2) ta được:
\(4y^2+2\sqrt{4-y^2}-5\sqrt{4\left(y+2\right)-\left(y+2\right)^2}+6=0\)
\(\Leftrightarrow4y^2+2\sqrt{4-y^2}-5\sqrt{4-y^2}+6=0\)
\(\Leftrightarrow4y^2+6=3\sqrt{4-y^2}\)
\(\Leftrightarrow\left(4y^2+6\right)^2=9\left(4-y^2\right)\)
\(\Leftrightarrow16y^4+57y^2=0\)
\(\Leftrightarrow y=0\Rightarrow x=2\) (TMĐK).
+) TH2: \(x^2+xy+y^2-4x-2y-8=0\):
\(\Leftrightarrow\left(x-2\right)^2+y^2+\left(x-2\right)y=12\).
Do VT \(\le12\) (Đẳng thức xảy ra khi và chỉ khi x = 4; y = 2 hoặc x = 0; y = -2).
Do đó \(\left[{}\begin{matrix}x=4;y=2\\x=0;y=-2\end{matrix}\right.\).
Thử lại không có gt nào thỏa mãn.
Vậy...
giải hệ phương trình \(\left\{{}\begin{matrix}x\sqrt{y-1}+y\sqrt{x-1}=1\\x^2y^2+16x+16y=12+20xy\end{matrix}\right.\)
ĐKXĐ:...
Biến đổi pt dưới:
\(x^2y^2-4xy+4=16xy+16-16x-16y\)
\(\Leftrightarrow\left(xy-2\right)^2=16\left(x-1\right)\left(y-1\right)\)
\(\Leftrightarrow\left|xy-2\right|=4\sqrt{\left(x-1\right)\left(y-1\right)}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x-1}=a\ge0\\\sqrt{y-1}=b\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=a^2+1\\y=b^2+1\end{matrix}\right.\)
Ta được hệ:
\(\left\{{}\begin{matrix}\left(a^2+1\right)b+\left(b^2+1\right)a=1\\\left|\left(a^2+1\right)\left(b^2+1\right)-2\right|=4ab\end{matrix}\right.\)
Đây là hệ đối xứng, hy vọng bạn tự giải được :(
Giải hệ phương trình
\(\hept{\begin{cases}x^3-3x^2y-4x^2+4y^3+16xy=16y^2\\\sqrt{x-2y}+\sqrt{x+y}=2\sqrt{3}\end{cases}}\)
Giải hệ phương trình
\(\left\{{}\begin{matrix}x^3-3x^2y-4x^2+4y^3+16xy=16y^2\\\sqrt{x-2y}+\sqrt{x+y}=2\sqrt{3}\end{matrix}\right.\)
giải hệ phương trình sau
\(\hept{\begin{cases}\sqrt{y^2-8x+9}-\sqrt[3]{xy+12-6x}\le1\\\sqrt{2\left(x-y\right)^2+10x-6y+12}-\sqrt{y}=\sqrt{x+2}\end{cases}}\)
Vừa làm bên Học 24 xong nhưng do gửi link thì bị lỗi nên t up lại, tiện thể ăn điểm luôn (tất nhiên giúp you vẫn là lí do chính, điểm là tiện thôi :))
\(pt\left(2\right)\Leftrightarrow\sqrt{2\left(x-y\right)^2+10x-6y+12}-\sqrt{y}-\sqrt{x+2}=0\)
\(\Leftrightarrow\sqrt{2\left(x-y\right)^2+10x-6y+12}-2\sqrt{y}-\left(\sqrt{x+2}-\sqrt{y}\right)=0\)
\(\Leftrightarrow\frac{2\left(x-y\right)^2+10x-6y+12-4y}{\sqrt{2\left(x-y\right)^2+10x-6y+12}+2\sqrt{y}}-\frac{x+2-y}{\sqrt{x+2}+\sqrt{y}}=0\)
\(\Leftrightarrow\frac{2\left(x-y+3\right)\left(x-y+2\right)}{\sqrt{2\left(x-y\right)^2+10x-6y+12}+2\sqrt{y}}-\frac{x-y+2}{\sqrt{x+2}+\sqrt{y}}=0\)
\(\Leftrightarrow\left(x-y+2\right)\left(\frac{2\left(x-y+3\right)}{\sqrt{2\left(x-y\right)^2+10x-6y+12}+2\sqrt{y}}-\frac{1}{\sqrt{x+2}+\sqrt{y}}\right)=0\)
\(\Rightarrow x=y-2\). Thay vào \(pt\left(1\right)\) ta có:
\(pt\left(1\right)\Leftrightarrow\sqrt{y^2-8\left(y-2\right)+9}-\sqrt[3]{\left(y-2\right)y+12-6\left(y-2\right)}\le1\)
\(\Leftrightarrow\sqrt{y^2-8y+25}-\sqrt[3]{y^2-8y+24}\le1\)
\(\Leftrightarrow\left(\sqrt{y^2-8y+25}-3\right)-\left(\sqrt[3]{y^2-8y+24}-2\right)\le0\)
\(\Leftrightarrow\frac{y^2-8y+25-9}{\sqrt{y^2-8y+25}+3}-\frac{y^2-8y+24-8}{\sqrt[3]{\left(y^2-8y+24\right)^2}+4+2\sqrt[3]{y^2-8y+24}}\le0\)
\(\Leftrightarrow\frac{\left(y-4\right)^2}{\sqrt{y^2-8y+25}+3}-\frac{\left(y-4\right)^2}{\sqrt[3]{\left(y^2-8y+24\right)^2}+4+2\sqrt[3]{y^2-8y+24}}\le0\)
\(\Leftrightarrow\left(y-4\right)^2\left(\frac{1}{\sqrt{y^2-8y+25}+3}-\frac{1}{\sqrt[3]{\left(y^2-8y+24\right)^2}+4+2\sqrt[3]{y^2-8y+24}}\right)\le0\)
\(\Rightarrow y=4\Rightarrow x=y-2=4-2=2\)
Vậy \(x=2;y=4\)
câu trả lời của mình là nguyễn thị chịu thua
giải hệ phương trình sau
\(\left\{{}\begin{matrix}\sqrt{y^2-8x+9}-\sqrt[3]{xy+12-6x}\le1\\\sqrt{2\left(x-y\right)^2+10x-6y+12}-\sqrt{y}=\sqrt{x+2}\end{matrix}\right.\)
Ngồi gõ cả tiếng rồi ngộ ra mới out nick :|
\(pt\left(2\right)\Leftrightarrow\sqrt{2\left(x-y\right)^2+10x-6y+12}-\sqrt{y}-\sqrt{x+2}=0\)
\(\Leftrightarrow\sqrt{2\left(x-y\right)^2+10x-6y+12}-2\sqrt{y}-\left(\sqrt{x+2}-\sqrt{y}\right)=0\)
\(\Leftrightarrow\dfrac{2\left(x-y\right)^2+10x-6y+12-4y}{\sqrt{2\left(x-y\right)^2+10x-6y+12}+2\sqrt{y}}-\dfrac{x+2-y}{\sqrt{x+2}+\sqrt{y}}=0\)
\(\Leftrightarrow\dfrac{2\left(x-y+3\right)\left(x-y+2\right)}{\sqrt{2\left(x-y\right)^2+10x-6y+12}+2\sqrt{y}}-\dfrac{x+2-y}{\sqrt{x+2}+\sqrt{y}}=0\)
\(\Leftrightarrow\left(x-y+2\right)\left(\dfrac{2\left(x-y+3\right)}{\sqrt{2\left(x-y\right)^2+10x-6y+12}+2\sqrt{y}}-\dfrac{1}{\sqrt{x+2}+\sqrt{y}}\right)=0\)
\(\Rightarrow x=y-2\). Thay vào \(pt(1)\) có:
\(pt\left(1\right)\Leftrightarrow\sqrt{y^2-8\left(y-2\right)+9}-\sqrt[3]{\left(y-2\right)y+12-6\left(y-2\right)}\le1\)
\(\Leftrightarrow\sqrt{y^2-8y+25}-\sqrt[3]{y^2-8y+24}\le1\)
\(\Leftrightarrow\left(\sqrt{y^2-8y+25}-3\right)-\left(\sqrt[3]{y^2-8y+24}-2\right)\le0\)
\(\Leftrightarrow\dfrac{y^2-8y+25-9}{\sqrt{y^2-8y+25}+3}-\dfrac{y^2-8y+24-8}{\sqrt[3]{\left(y^2-8y+24\right)^2}+4+2\sqrt[3]{y^2-8y+24}}\le0\)
\(\Leftrightarrow\dfrac{\left(y-4\right)^2}{\sqrt{y^2-8y+25}+3}-\dfrac{\left(y-4\right)^2}{\sqrt[3]{\left(y^2-8y+24\right)^2}+4+2\sqrt[3]{y^2-8y+24}}\le0\)
\(\Leftrightarrow\left(y-4\right)^2\left(\dfrac{1}{\sqrt{y^2-8y+25}+3}-\dfrac{1}{\sqrt[3]{\left(y^2-8y+24\right)^2}+4+2\sqrt[3]{y^2-8y+24}}\right)\le0\)
\(\Rightarrow y=4\Rightarrow x=y-2=4-2=2\)
Vậy \(x=2;y=4\)
Giải hệ \(\left\{{}\begin{matrix}\left(x+4y\right)\left(x^2+16y^2\right)=32xy\left(x+4y-3\sqrt{xy}\right)\\\sqrt{3x-1}+6x=\sqrt{8y+3}+8\left(2y+1\right)\end{matrix}\right.\)
ĐKXĐ: ...
Đặt \(\left\{{}\begin{matrix}\sqrt{3x-1}=a\ge0\\\sqrt{8y+3}=b\ge0\end{matrix}\right.\)
\(\Rightarrow a+2\left(a^2+1\right)=b+2\left(b^2-3\right)+8\)
\(\Leftrightarrow2a^2-2b^2+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(2a+2b+1\right)=0\)
\(\Leftrightarrow a=b\Leftrightarrow3x-1=8y+3\) (1)
Lại xét pt đầu:
\(\left(x+4y\right)\left(x^2+16y^2+8xy\right)=8xy\left(x+4y\right)+32xy\left(x+4y-3\sqrt{xy}\right)\)
\(\Leftrightarrow\left(x+4y\right)^3-40xy\left(x+4y\right)+96xy\sqrt{xy}=0\)
Đặt \(\left\{{}\begin{matrix}x+4y=m\\\sqrt{xy}=n\ge0\end{matrix}\right.\)
\(\Rightarrow m^3-40mn^2+96n^3=0\)
\(\Leftrightarrow\left(m-4n\right)\left(m^2+4mn-24n^2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4y=4\sqrt{xy}\\\left(x+4y\right)^2+4\left(x+4y\right)\sqrt{xy}-24xy=0\end{matrix}\right.\) (2)
Rút x hoặc y từ (1) và thế vào (2) để giải
Dài quá làm biếng.