Cho hàm số
f x = x 9 9 - x 8 8 + x 6 6 - x 5 5 + x 4 4 - x 2 2 + x + 2017
Mệnh đề nào sau đây đúng?
A. Hàm số f(x) chỉ có cực đại;
B. Hàm số f(x) chỉ có cực tiểu;
C. Hàm số f(x) chỉ có cực đại và cực tiểu;
D. Hàm số f(x) không có cực trị
Bài 1. Cho hàm số y= f(x)= {-2(x2 + 1) khi x ≤ 1 Tính f(1);f(2),f(√2 phần 2);f(√2)
{4√x-1 khi x > 1
Bài 2.Cho hàm số y= f(x)= { √-3x+8 khi x < 2 Tính f(-3);f(2);f(1),f(9)
{√x+7 khi x ≥ 2
Ở góc trái khung soạn thảo có hỗ trợ viết công thức toán (biểu tượng $\sum$). Bạn viết lại đề bằng cách này để được hỗ trợ tốt hơn.
Cho hàm số f(x) liên tục trên R và F(X) là nguyên hàm của f(x), biết \(\int\limits^9_0f\left(x\right)dx=9\) và F(0)=3 tính F(9)
A. F(9)= -6
B. F(9)= 6
C. F(9)= 12
D. F(9)= -12
\(\int\limits^9_0f\left(x\right)dx=F\left(9\right)-F\left(0\right)\)
\(\Rightarrow F\left(9\right)-F\left(0\right)=9\)
\(\Rightarrow F\left(9\right)=9+F\left(0\right)=9+3=12\)
Cho hàm số f(x) liên tục trên ℝ và F(x) là nguyên hàm của f(x), biết ∫ 0 9 f ( x ) d x = 9 , F(0)=3. Tính F(9).
A. -6.
B. 6.
C. 12.
D. -12.
cho hàm số \(f\left(x\right)=\dfrac{9^x}{9^x+3}\). Tìm m để phương trình \(f\left(3m+\dfrac{1}{4}\sin x\right)+f\left(\cos^2x\right)=1\) có đúng 8 nghiệm phân biệt thuộc [0;3pi]
\(f\left(1-x\right)+f\left(x\right)=\dfrac{9^{1-x}}{9^{1-x}+3}+\dfrac{9^x}{9^x+3}=\dfrac{9}{9+3.9^x}+\dfrac{9^x}{9^x+3}=\dfrac{3}{9^x+3}+\dfrac{9^x}{9^x+3}=1\)
\(\Rightarrow f\left(x\right)=1-f\left(1-x\right)\)
\(\Rightarrow f\left(cos^2x\right)=1-f\left(sin^2x\right)\)
Do đó:
\(f\left(3m+\dfrac{1}{4}sinx\right)+f\left(cos^2x\right)=1\)
\(\Leftrightarrow f\left(3m+\dfrac{1}{4}sinx\right)=f\left(sin^2x\right)\) (1)
Hàm \(f\left(x\right)=\dfrac{9^x}{9^x+3}\) có \(f'\left(x\right)=\dfrac{3.9^x.ln9}{\left(9^x+3\right)^2}>0\Rightarrow f\left(x\right)\) đồng biến trên R
\(\Rightarrow\left(1\right)\Leftrightarrow3m+\dfrac{1}{4}sinx=sin^2x\)
Đến đây chắc dễ rồi, biện luận để pt \(sin^2x-\dfrac{1}{4}sinx=3m\) có 8 nghiệm trên khoảng đã cho
Cho hàm số f(x) liên tục trên R và F(x) là một nguyên hàm của f(x), biết ∫ 0 9 f x d x = 9 và F(0) = 9.
A. F(9) = -3
B. F(9) = -12.
C. F(9) = 12.
D. F(9) = 6.
Cho hàm số f(x) liên tục trên R và F(x) là một nguyên hàm của f(x) biết ∫ 0 9 f x d x = 9 và F(0)=9
A. F(9) = -3
B. F(9) = -12
C. F(9) = 12
D. F(9) = 6
Cho hàm số f(x) liên tục trên ℝ và F(x) là nguyên hàm của f(x), biết ∫ 0 9 f x d x = 9 và F(0) = 3.Tính F(9)
A. F 9 = − 6
B. F 9 = 6
C. F 9 = 12
D. F 9 = − 12
Đáp án C
Ta có:
9 = ∫ 0 9 f x d x = F x = 0 9 F 9 = F 0 ⇒ F 9 = F 0 + 9 = 12.
Mọi người giúp mk câu này vs ạ
Bài 8. Cho hàm số y = f(x) = x -2
a)Tính f(-1) ; f(0)
b)Tìm x để f(x) = 3
c)Điểm nào sau đây thuộc đồ thị của hàm số y = f(x) = x -2 : A(1;0) ; B(-1;-3) C(3;-1)
Bài 9. a) Vẽ đồ thị của hàm số y = - 2x
b) Điểm sau điểm nào thuộc đồ thị hàm số: A (-2; 4); B(-1; -2)
Bài 10: Cho hàm số y = f(x) = ax (a # 0)
a)Tìm a biết đồ thị hàm số đi qua điểm A( 1; -3)
b)Vẽ đồ thị ứng với giá trị a vừa tìm được
Bài 8:
a) f(-1) = (-1) - 2 = -3
f(0) = 0 - 2 = -2
b) f(x) = 3
\(\Rightarrow x-2=3\)
\(x=3+2\)
\(x=5\)
Vậy \(x=5\) thì f(x) = 3
c) Thay tọa độ điểm A(1; 0) vào hàm số, ta có:
VT = 0; VP = 1 - 2 = -1
\(\Rightarrow VT\ne VP\)
\(\Rightarrow\) Điểm A(1; 0) không thuộc đồ thị của hàm số đã cho
Thay tọa độ điểm B(-1; -3) vào hàm số, ta có:
VT = -3; VP = -1 - 2 = -3
\(\Rightarrow VT=VP=-3\)
\(\Rightarrow\) Điểm B(-1; -3) thuộc đồ thị hàm số đã cho
Thay tọa độ điểm C(3; -1) vào hàm số, ta có:
VT = -1; VP = 3 - 2 = 1
\(\Rightarrow VT\ne VP\)
\(\Rightarrow\) Điểm C(3; -1) không thuộc đồ thị hàm số đã cho.
Bài 8:
a. y = f(x) = -1- 2= -3
y = f(x) = 0-2= -2
b. cho y = f(x)= 3
ta có: 3=x-2 => x-2=3
x= 3+2
x= 5
c. điểm B
Cho hàm số bậc ba \(y=f\left(x\right)\) có đồ thị như hình vẽ bên. Có bao nhiêu giá trị nguyên của tham số \(m\in\left[0;20\right]\) để hàm số \(g\left(x\right)=\left|f^2\left(x\right)-2f\left(x\right)-m\right|\) có 9 điểm cực trị?
A. 8 B. 9 C. 10 D. 11
Giải chi tiết cho mình bài này với ạ, mình cảm ơn nhiều♥
Đặt \(h\left(x\right)=f^2\left(x\right)-2f\left(x\right)-m\Rightarrow h'\left(x\right)=2f'\left(x\right)\left[f\left(x\right)-1\right]\)
\(h'\left(x\right)=0\Rightarrow\left[{}\begin{matrix}f'\left(x\right)=0\\f\left(x\right)=1\end{matrix}\right.\)
Từ đồ thị ta thấy \(f'\left(x\right)=0\) có 2 nghiệm (do \(f\left(x\right)\) có 2 cực trị) và \(y=1\) cắt \(y=f\left(x\right)\) tại 3 điểm
\(\Rightarrow h'\left(x\right)=0\) có 5 nghiệm
\(\Rightarrow\) Hàm \(g\left(x\right)\) có 9 cực trị khi \(f^2\left(x\right)-2f\left(x\right)-m=0\) có 4 nghiệm không trùng với nghiệm của \(h'\left(x\right)=0\)
TH1: \(m=0\Rightarrow f^2\left(x\right)-2f\left(x\right)=0\Rightarrow\left[{}\begin{matrix}f\left(x\right)=0\\f\left(x\right)=2\end{matrix}\right.\)
\(f\left(x\right)=0\) có 2 nghiệm, trong đó 1 nghiệm trùng với \(f'\left(x\right)=0\) nên chỉ tính 1 nghiệm, \(f\left(x\right)=2\) có 3 nghiệm \(\Rightarrow f^2\left(x\right)-2f\left(x\right)=0\) có 4 nghiệm ko trùng \(h'\left(x\right)=0\) (thỏa mãn)
TH2: \(m>0\), đặt \(k=f\left(x\right)\Rightarrow k^2-2k-m=0\) (1) luôn có 2 nghiệm pb trái dấu \(k_1< 0< k_2\) do \(c=-m< 0\)
Từ đồ thị ta thấy \(f\left(x\right)=k_1\) luôn có đúng 1 nghiệm
Do đó, \(f\left(x\right)=k_2\) phải có 3 nghiệm phân biệt đồng thời \(k_2\ne1\) \(\Rightarrow\left\{{}\begin{matrix}0< k_2< 4\\k_2\ne1\end{matrix}\right.\)
(\(k_2\) là nghiệm dương của (1) nên \(k_2=1+\sqrt{m+1}\))
\(\Rightarrow\left\{{}\begin{matrix}0< 1+\sqrt{m+1}< 4\\1+\sqrt{m+1}\ne1\end{matrix}\right.\) \(\Rightarrow m< 8\Rightarrow m=\left\{1;2;3;4;5;6;7\right\}\)
Kết hợp lại ta được \(m=\left\{0;1;...;7\right\}\) có 8 giá trị nguyên của m thỏa mãn
Cho hàm số f(x) có đạo hàm liên tục trên đoạn [0;1] đồng thời thỏa mãn f ' ( 0 ) = 9 và 9 f ' ' ( x ) + [ f ' ( x ) - x ] 2 = 9 . Tính
A. T = 2 + 9 ln 2
B. T=9
C. T = 1 2 + 9 ln 2
D. T = 2 - 9 ln 2