Tất cả các đường tiệm cận đứng của đồ thị hàm số y = x - 1 x 2 - x là
A. x=1.
B. x=0;x=1.
C. x=0.
D. x=0;x=-1.
Cho hàm số
y
=
f
(
x
)
=
a
x
4
+
b
x
2
+
c
có đồ thị như hình bên dưới. Tìm tổng tất cả các đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số
y
=
x
(
x
-
1
)
f
(
x
)
-
1
Đồ thị của hàm số y = f ( x ) = cos x + 1 ( x - 1 ) ( x - 2 ) có tổng tất cả bao nhiêu đường tiệm cận đứng và tiệm cận ngang?
A. 0
B. 3
C. 2
D. 1
Xét các mệnh đề sau
(1). Đồ thị hàm số y = 1 2 x - 3 có hai đường tiệm cận đứng và một đường tiệm cận ngang
(2). Đồ thị hàm số y = x + x 2 + x + 1 x có hai đường tiệm cận ngang và một đường tiệm cận đứng
(3). Đồ thị hàm số y = x - 2 x - 1 x 2 - 1 có một đường tiệm cận ngang và hai đường tiệm cận đứng.
Số mệnh đề đúng là:
A. 0
B. 3
C. 2
D. 1
Đáp án D
Đồ thị hàm số y = 1 2 x - 3 có hai đường tiệm cận đứng và một đường tiệm cận ngang
Đồ thị hàm số y = x + x 2 + x + 1 x có 1 tiệm cận đứng là x = 0
Mặt khác lim x → + ∞ y = x + x 2 + x + 1 x = lim x → + ∞ x + x + 1 x + 1 x 2 x = 0 nên đồ thị hàm số có 2 tiệm cận ngang
Xét hàm số y = x - 2 x - 1 x 2 - 1 = x - 2 x - 1 x + 2 x - 1 x 2 - 1 = x - 1 x + 2 x - 1 x - 1 x > 1 2 suy ra đồ thị không có tiệm cận đứng. Do đó có 1 mệnh đề đúng
Cho hàm số y = f x = a x 4 + b x 2 + c có đồ thị như hình bên dưới. Tìm tổng tất cả các đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y = x x - 1 f x - 1
A. 4
B. 3
C. 2
D. 1
Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = x - 2 x 2 - m x + 1 có hai đường tiệm cận đứng
A. m ∈ ( - ∞ ; - 2 ) ∪ ( 2 ; + ∞ ) \ 5 2
B. m ∈ ( - ∞ ; - 2 ] ∪ [ 2 ; + ∞ )
C. m ∈ ( - ∞ ; - 2 ) ∪ ( 2 ; + ∞ )
D. m ≢ 5 2
Mọi người ơi cho mình hỏi bài này với ạ
1.Số đường tiệm cận của hàm số y=\(\dfrac{\sqrt{x^2+1}-x}{\sqrt{x^2-9}-4}\) là
2.Tìm tất cả các tiệm cận đứng của đồ thị hàm số y=\(\dfrac{2x-1-\sqrt{x^2+x+3}}{x^2-5x+6}\)
Mình cảm ơn mọi người nhiều lắm !!!!!
1.
Điều kiện xác định của căn thức: \(\left[{}\begin{matrix}x\ge3\\x\le-3\end{matrix}\right.\)
\(\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{x^2+1}-x}{\sqrt{x^2-9}-4}=\dfrac{1-1}{1}=0\Rightarrow y=0\) là 1 TCN
\(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{x^2+1}-x}{\sqrt{x^2-9}-4}=\dfrac{-1-1}{-1}=2\Rightarrow y=2\) là 1 TCN
\(\lim\limits_{x\rightarrow-5}\dfrac{\sqrt{x^2+1}-x}{\sqrt{x^2-9}-4}=\dfrac{\sqrt{26}+5}{0}=+\infty\Rightarrow x=-5\) là 1 TCĐ
\(\lim\limits_{x\rightarrow5}\dfrac{\sqrt{x^2+1}-x}{\sqrt{x^2-9}-4}=\dfrac{\sqrt{26}-5}{0}=+\infty\Rightarrow x=5\) là 1 TCĐ
Hàm có 4 tiệm cận
2.
Căn thức của hàm luôn xác định
Ta có:
\(\lim\limits_{x\rightarrow2}\dfrac{2x-1-\sqrt{x^2+x+3}}{x^2-5x+6}=\lim\limits_{x\rightarrow2}\dfrac{\left(2x-1\right)^2-\left(x^2+x+3\right)}{\left(x-2\right)\left(x-3\right)\left(2x-1+\sqrt{x^2+x+3}\right)}\)
\(=\lim\limits_{x\rightarrow2}\dfrac{\left(x-2\right)\left(3x+1\right)}{\left(x-2\right)\left(x-3\right)\left(2x-1+\sqrt{x^2+x+3}\right)}\)
\(=\lim\limits_{x\rightarrow2}\dfrac{3x+1}{\left(x-3\right)\left(2x-1+\sqrt{x^2+x+3}\right)}=\dfrac{-7}{6}\) hữu hạn
\(\Rightarrow x=2\) ko phải TCĐ
\(\lim\limits_{x\rightarrow3}\dfrac{2x-1-\sqrt{x^2+x+3}}{x^2-5x+6}=\dfrac{5-\sqrt{15}}{0}=+\infty\)
\(\Rightarrow x=3\) là tiệm cận đứng duy nhất
Cho hàm số y = x - 2 m x 2 - 2 x + 4 . Có tất cả bao nhiêu giá trị của tham số m để đồ thị hàm số có đúng hai đường tiệm cận (tiệm cận đứng và tiệm cận ngang)?
A. 1.
B. 3.
C. 0.
D. 2.
Suy ra đồ thị hàm số có 1 đường TCN y = 0.
Do đó đồ thị hàm số có đúng 2 đường tiệm cận đồ thị hàm số có đứng 1 đường tiệm cận đứng phương trình m x 2 - 2 x + 4 = 0 có nghiệm kép hoặc có 2 nghiệm phân biệt trong đó có 1 nghiệm x = 2.
Vậy có 1 giá trị của m thỏa mãn yêu cầu bài toán.
Chọn A
Cho các mệnh đề sau
(1) Đường thẳng y = y 0 là đường tiệm cận ngang của đồ thị hàm số y = f(x) nếu lim x → x 0 f x = y 0 h o ặ c lim x → x 0 f x = y 0
(2) Đường thẳng y = y 0 là đường tiệm cận ngang của đồ thị hàm số y = f(x) nếu lim x → - ∞ f x = y 0 h o ặ c lim x → + ∞ f x = y 0
(3) Đường thẳng x = x 0 là đường tiệm cận đứng của đồ thị hàm số y = f(x) nếu lim x → x 0 + f x = + ∞ h o ặ c lim x → x 0 - f x = - ∞
(4) Đường thẳng x = x 0 là đường tiệm cận đứng của đồ thị hàm số y = f(x) nếu lim x → x 0 + f x = - ∞ h o ặ c lim x → x 0 - f x = - ∞
Trong các mệnh đề trên, số mệnh đề đúng là:
A. 1
B. 2
C. 3
D. 4
Chọn C
Dựa vào định nghĩa mệnh đề 1 sai và mệnh đề 2, 3, 4 đúng.
Tìm tất cả các tiệm cận đứng của đồ thị hàm số y = 2 x - 1 - x 2 + x + 3 x 2 - 5 x + 6
A. x= 3 và x= - 2.
B. x= -3
C. x= 3và x= 2.
D. x= 3
Tập xác định: D= R\ { 2; 3}
lim x → 2 + 2 x - 1 - x 2 + x + 3 x 2 - 5 x + 6 = lim x → 2 + ( 2 x - 1 ) 2 - ( x 2 + x + 3 ) ( x 2 - 5 x + 6 ) ( 2 x - 1 + x 2 + x + 3 ) = lim x → 2 + 3 x + 1 ( x - 3 ) ( 2 x - 1 + x 2 + x + 3 ) = - 7 6
Tương tự lim x → 2 - 2 x - 1 - x 2 + x + 3 x 2 - 5 x + 6 = - 7 6 .
Suy ra đường thẳng x= 2 không là tiệm cận đứng của đồ thị hàm số đã cho.
lim x → 3 + 2 x - 1 - x 2 + x + 3 x 2 - 5 x + 6 = + ∞ ; lim x → 3 - 2 x - 1 - x 2 + x + 3 x 2 - 5 x + 6 = - ∞
Suy ra đường thẳng x= 3 là tiệm cận đứng của đồ thị hàm số đã cho.
Chọn D.